Leonardo Fernández Troyano

BRIDGE ENGINEERING
A GLOBAL PERSPECTIVE

COLEGIO DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS

Thomas Telford
CONTENTS

CHAPTER 1: INTRODUCTION
1.1. The bridge, the road and the river 1
1.2. The bridge, an object in the landscape 5
1.3. The bridge, a work of engineers 9
1.4. The bridge, a form built 20
1.5. The bridge, heritage of mankind 35

CHAPTER 2: BRIDGES AND THEIR HISTORICAL EVOLUTION 43
2.1. The different histories of bridges 43
2.2. The two periods in the history of bridges 54
2.3. The evolution and development of different types of bridges 57
2.4. The vicissitudes of bridges throughout history 59
2.5. Treatment of historic bridges 73
 2.5.1. Adaptation work 74
 2.5.2. Repair, rebuilding and restoration work 77
 2.5.3. Replacement of historic bridges 78
2.6. Engineers and the history of bridges 80

CHAPTER 3: BRIDGES AND THEIR MATERIALS 83
3.1. Different bridge materials 83
3.2. Stone bridges 86
 3.2.1. Brick bridges 94
 3.2.2. Evolution and development of stone bridges 96
 3.2.2.1. Eastern bridges 96
 3.2.2.2. Roman bridges 100
 3.2.2.3. Medieval bridges 110
 3.2.2.4. Bridges of the Modern Age 123
 3.2.2.5. The eighteenth century 131
 3.2.2.6. The end of stone bridges: the nineteenth century and beginning of the twentieth century 135
3.3. Timber bridges 142
 3.3.1. Evolution and development of timber bridges 145
 3.3.1.1. Bridges of Ancient Times and the Middle Ages 145
 3.3.1.2. Covered bridges 148
BRIDGE ENGINEERING

3.3.1.3. Eastern bridges
3.3.1.4. Bridges of the Modern and Contemporary Era
3.3.1.5. Timber centrings
3.4. Metal bridges
 3.4.1. Cast iron bridges
 3.4.2. Wrought iron bridges
 3.4.3. Steel bridges
 3.4.4. Procedures for joining metal parts
 3.4.5. Evolution and development of metal bridges
3.5. Concrete bridges
 3.5.1. Concrete and its manners of resistance
 3.5.2. High-strength concrete
 3.5.3. Lightweight concrete
 3.5.4. Plain concrete bridges
 3.5.5. Reinforced concrete bridges
 3.5.6. Prestressed concrete bridges
3.6. Composite bridges
3.7. Future bridge materials

CHAPTER 4: BRIDGES, THEIR RESISTANT STRUCTURES AND THEIR BUILDING PROCESSES

4.1. Relationships between structure, material, construction and scale in bridges
4.2. Bridges according to their structure
4.3. Theoretical and experimental understanding of bridges
 4.3.1. Structural safety
 4.3.2. Structure calculation criteria
 4.3.3. Structure sciences
 4.3.4. Structure study models
 4.3.5. Origins and basic problems in sciences of structures
 4.3.6. Non-linear calculation
 4.3.7. Dynamic calculation
 4.3.8. Theoretical knowledge and experimental knowledge
 4.3.9. Catastrophic consequences of a lack of theoretical knowledge
4.4. Forces on bridges
4.5. Links between the different elements forming a bridge
4.6. Skew bridges and curved bridges
 4.6.1. Skew bridges
 4.6.2. Curved bridges
4.7. Bridge building
 4.7.1. Stages in bridge building
CHAPTER 7: FRAME BRIDGES

7.1. The idea of the frame
7.2. Frame bridge construction
7.3. Evolution and development of frame bridges
 7.3.1. Timber frame bridges
 7.3.2. Metal frames
 7.3.3. Concrete frames
 7.3.3.1. \(\pi \)-frames with inclined piers
 7.3.3.2. Triangular cell frames

CHAPTER 8: CABLE-SUPPORTED BRIDGES: SUSPENSION AND STAYED

8.1. The cable and its resistant efficiency
8.2. Main cables, suspenders and stays
 8.2.1. Chain cables
 8.2.2. Straight wire cables
 8.2.3. Spiral twisted wire cables
 8.2.4. Prestressed concrete stays
 8.2.5. Stays formed by 0.6-inch cables
 8.2.6. Singular staying
8.3. Suspension bridges
 8.3.1. Structure of suspension bridges
 8.3.2. Catenary bridges
 8.3.3. Self-anchored bridges
 8.3.4. Suspension bridges with an upper or intermediate deck
 8.3.5. Multiple span suspension bridges
 8.3.6. Suspension bridge towers
 8.3.7. Theoretical understanding of suspension bridges
 8.3.8. Suspension bridge construction
 8.3.8.1. Tower and counterweight construction
 8.3.8.2. Erecting main cables
 8.3.8.3. Erecting the deck
 8.3.9. Evolution and development of suspension bridges
 8.3.9.1. The first generation
 8.3.9.2. The second generation
 8.3.9.3. The third generation
 8.3.9.4. The fourth generation
8.4. Cable-stayed bridges
 8.4.1. Structure of cable-stayed bridges
 8.4.2. Multiple span cable-stayed bridges
 8.4.3. Cable-stayed bridge towers
 8.4.4. Theoretical understanding of cable-stayed bridges
8.4.5. Cable-stayed bridge construction 622
 8.4.5.1. Cantilever building method 622
 8.4.5.2. Construction on temporary supports 630
 8.4.5.3. Shifting the bridge by horizontal movements 632
 8.4.5.4. Building the different items forming a bridge 640
8.4.6. Evolution and development of cable-stayed bridges 642
 8.4.6.1. Precedents 642
 8.4.6.2. Metal cable-stayed bridges 653
 8.4.6.3. Concrete cable-stayed bridges 666

CHAPTER 9: SINGULAR BRIDGES 689

9.1. FLOATING BRIDGES 692
 9.1.1. Evolution and development of floating bridges 693

9.2. MOVABLE BRIDGES 700
 9.2.1. Bascule bridges 708
 9.2.2. Swing bridges 723
 9.2.3. Vertical lift bridges 728
 9.2.4. Horizontally moving bridges 733

9.3. TRANSPORTER BRIDGES 742

INDEX OF BRIDGES 743

INDEX OF PEOPLE/NAMES 757

INDEX OF ORGANISATIONS 763

ILLUSTRATION CREDITS 765