Contents

1. **Classification of Composite Materials** .. 1
 1.1 Definition and Characteristics ... 2
 1.2 Significance and Objectives ... 7
 1.3 Modelling ... 8
 1.4 Material Characteristics of the Constituents ... 11
 1.5 Advantages and Limitations .. 13
 1.6 Problems ... 14

2. **Linear Anisotropic Materials** ... 15
 2.1 Generalized Hooke’s Law ... 16
 2.1.1 Stresses, Strains, Stiffness, and Compliances 17
 2.1.2 Transformation Rules ... 23
 2.1.3 Symmetry Relations of Stiffness and Compliance Matrices 27
 2.1.4 Two-dimensional Material Equations ... 40
 2.1.5 Curvilinear anisotropy ... 45
 2.1.6 Problems ... 48
 2.2 Fundamental Equations and Variational Solution Procedures 52
 2.2.1 Boundary and Initial-Boundary Value Equations 53
 2.2.2 Principle of Virtual Work and Energy Formulations 57
 2.2.3 Variational Methods ... 62
 2.2.4 Problems ... 68

3. **Effective Material Moduli for Composites** .. 77
 3.1 Elementary Mixture Rules for Fibre-Reinforced Laminae 78
 3.1.1 Effective Density ... 79
 3.1.2 Effective Longitudinal Modulus of Elasticity 79
 3.1.3 Effective Transverse Modulus of Elasticity 80
 3.1.4 Effective Poisson’s Ratio ... 81
 3.1.5 Effective In-plane Shear Modulus ... 82
 3.1.6 Discussion on the Elementary Mixture Rules 83
 3.2 Improved Formulas for Effective Moduli of Composites 84
 3.3 Problems ... 86
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Elastic Behavior of Laminate and Sandwich Composites</td>
<td>91</td>
</tr>
<tr>
<td>4.1 Elastic Behavior of Laminae</td>
<td>91</td>
</tr>
<tr>
<td>4.1.1 On-axis Stiffness and Compliances of UD-Laminae</td>
<td>92</td>
</tr>
<tr>
<td>4.1.2 Off-axis Stiffness and Compliances of UD-Laminae</td>
<td>97</td>
</tr>
<tr>
<td>4.1.3 Stress Resultants and Stress Analysis</td>
<td>106</td>
</tr>
<tr>
<td>4.1.4 Problems</td>
<td>113</td>
</tr>
<tr>
<td>4.2 Elastic Behavior of Laminates</td>
<td>119</td>
</tr>
<tr>
<td>4.2.1 General Laminates</td>
<td>120</td>
</tr>
<tr>
<td>4.2.2 Stress-Strain Relations and Stress Resultants</td>
<td>122</td>
</tr>
<tr>
<td>4.2.3 Laminates with Special Laminae Stacking Sequences</td>
<td>129</td>
</tr>
<tr>
<td>4.2.4 Stress Analysis</td>
<td>140</td>
</tr>
<tr>
<td>4.2.5 Thermal and Hygroscopic Effects</td>
<td>143</td>
</tr>
<tr>
<td>4.2.6 Problems</td>
<td>148</td>
</tr>
<tr>
<td>4.3 Elastic Behavior of Sandwiches</td>
<td>153</td>
</tr>
<tr>
<td>4.3.1 General Assumptions</td>
<td>154</td>
</tr>
<tr>
<td>4.3.2 Stress Resultants and Stress Analysis</td>
<td>155</td>
</tr>
<tr>
<td>4.3.3 Sandwich Materials with Thick Cover Sheets</td>
<td>157</td>
</tr>
<tr>
<td>4.4 Problems</td>
<td>158</td>
</tr>
<tr>
<td>5. Classical and Improved Theories</td>
<td>161</td>
</tr>
<tr>
<td>5.1 General Remarks</td>
<td>161</td>
</tr>
<tr>
<td>5.2 Classical Laminate Theory</td>
<td>165</td>
</tr>
<tr>
<td>5.3 Shear Deformation Theory for Laminates and Sandwiches</td>
<td>171</td>
</tr>
<tr>
<td>5.4 Layerwise Theories</td>
<td>176</td>
</tr>
<tr>
<td>5.5 Problems</td>
<td>177</td>
</tr>
<tr>
<td>6. Failure Mechanisms and Criteria</td>
<td>183</td>
</tr>
<tr>
<td>6.1 Fracture Modes of Laminae</td>
<td>184</td>
</tr>
<tr>
<td>6.2 Failure Criteria</td>
<td>188</td>
</tr>
<tr>
<td>6.3 Problems</td>
<td>200</td>
</tr>
<tr>
<td>7. Modelling and Analysis of Beams</td>
<td>205</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>205</td>
</tr>
<tr>
<td>7.2 Classical Beam Theory</td>
<td>207</td>
</tr>
<tr>
<td>7.3 Shear Deformation Theory</td>
<td>220</td>
</tr>
<tr>
<td>7.4 Sandwich Beams</td>
<td>226</td>
</tr>
<tr>
<td>7.4.1 Stresses and Strains for symmetrical cross-sections</td>
<td>227</td>
</tr>
<tr>
<td>7.4.2 Stresses and strains for non-symmetrical cross-sections</td>
<td>231</td>
</tr>
<tr>
<td>7.4.3 Governing Sandwich beam equations</td>
<td>232</td>
</tr>
<tr>
<td>7.5 Hygrothermo-Elastic Effects on Beams</td>
<td>236</td>
</tr>
<tr>
<td>7.6 Analytical Solutions</td>
<td>237</td>
</tr>
<tr>
<td>7.7 Problems</td>
<td>239</td>
</tr>
</tbody>
</table>
8. Modelling and Analysis of Plates ... 251
 8.1 Introduction .. 252
 8.2 Classical Laminate Theory .. 252
 8.3 Shear Deformation Theory .. 267
 8.4 Sandwich Plates .. 273
 8.5 Hygrothermo-Elastic Effects on Plates 275
 8.6 Analytical Solutions ... 278
 8.6.1 Classical Laminate Theory ... 278
 8.6.2 Shear Deformation Laminate Theory 291
 8.7 Problems .. 298

9. Modelling and Analysis of Circular Cylindrical Shells 315
 9.1 Introduction .. 316
 9.2 Classical Shell Theory ... 317
 9.2.1 General Case ... 317
 9.2.2 Specially Orthotropic Circular Cylindrical Shells Sub-
 jected by Axial Symmetric Loads 320
 9.2.3 Membrane and Semi-membrane theories 324
 9.3 Shear Deformation Theory .. 325
 9.4 Sandwich Shells .. 333
 9.5 Problems .. 334

10. Modelling and Analysis of Thin-walled Folded Structures 339
 10.1 Introduction ... 340
 10.2 Generalized Beam Models .. 343
 10.2.1 Basic Assumptions .. 344
 10.2.2 Potential Energy of the Folded Structure 346
 10.2.3 Reduction of the Two-dimensional Problem 347
 10.2.4 Simplified Structural Models 352
 10.2.5 An Efficient Structure Model for the Analysis of General
 Prismatic beam Shaped Thin-walled Plate Structures 358
 10.2.6 Free Eigen-vibration Analysis, Structure model A 359
 10.3 Solution Procedures ... 361
 10.3.1 Analytical Solutions .. 362
 10.3.2 Transfer Matrix Method .. 363
 10.4 Problems .. 369

11. Finite Element Analysis .. 377
 11.1 Introduction ... 378
 11.1.1 FEM Procedure ... 378
 11.1.2 Problems .. 381
 11.2 Finite Beam Elements .. 383
 11.2.1 Laminate Truss Elements .. 383
 11.2.2 Laminate Beam Elements .. 385
 11.2.3 Problems .. 391
Contents

11.3 Finite Plate Elements ... 393
 11.3.1 Classical Laminate Theory 397
 11.3.2 Shear Deformation Theory 399

11.4 Generalized Finite Beam Elements 404
 11.4.1 Foundations .. 405
 11.4.2 Element Definitions 405
 11.4.3 Element Equations ... 407
 11.4.4 System Equations and Solution 411
 11.4.5 Equations for the Free Vibration Analysis 412

11.5 Numerical Results .. 413
 11.5.1 Laminate Shell Elements in the Program System COS-MOS/M .. 413
 11.5.2 Examples for the use of Laminated Shell Elements 417
 11.5.3 Examples of the use of Generalized beam Elements 431

A. Matrix Operations .. 435
 A.1 Definitions .. 435
 A.2 Special Matrices ... 436
 A.3 Matrix Algebra and Analysis 437

B. Stress and strain transformations 441

C. Differential Operators for Rectangular Plates (Classical Plate Theory) 443

D. Differential Operators for Rectangular Plates (Shear Deformation Theory) .. 445

E. Differential Operators for Circular Cylindrical shells (Classical Shell Theory) .. 447

F. Differential Operators for Circular Cylindrical Shells (Shear Deformation Theory) .. 449

G. Solution Forms of the Differential Equation $w''' - k_1^2 w'' + k_2^4 w = 0$.. 451

H. Material's properties ... 453

I. References .. 459
 I.1 Selected Textbooks and Monographs on Composite Mechanics 459
 I.2 Supplementary Literature for Further Reading 462
 I.3 Selected Review Articles 463

Index ... 465