About the Author v
Preface to the Fifth Edition xv
Preface to the First Edition xvii

Chapter 1
The First Aeronautical Engineers 1
1.1 Introduction 1
1.2 Very Early Developments 4
1.3 Sir George Cayley (1773–1857)—The True Inventor of the Airplane 6
1.4 The Interregnum—From 1853 to 1891 13
1.5 Otto Lilienthal (1848–1896)—The Glider Man 17
1.6 Percy Pilcher (1867–1899)—Extending the Glider Tradition 20
1.7 Aeronautics Comes to America 21
1.8 Wilbur (1867–1912) and Orville (1871–1948) Wright—Inventors of the First Practical Airplane 27
1.9 The Aeronautical Triangle—Langley, the Wrights, and Glenn Curtiss 36
1.10 The Problem of Propulsion 45
1.11 Faster and Higher 46
1.12 Summary 49
Bibliography 50

Chapter 2
Fundamental Thoughts 52
2.1 Fundamental Physical Quantities of a Flowing Gas 56
2.1.1 Pressure 56
2.1.2 Density 57
2.1.3 Temperature 58
2.1.4 Flow Velocity and Streamlines 59
2.2 The Source of All Aerodynamic Forces 61
2.3 Equation of State for a Perfect Gas 63
2.4 Discussion of Units 65
2.5 Specific Volume 70
2.6 Anatomy of the Airplane 76
2.7 Anatomy of a Space Vehicle 87
2.8 Historical Note: The NACA and NASA 95
2.9 Summary 98
Bibliography 98
Problems 98

Chapter 3
The Standard Atmosphere 101
3.1 Definition of Altitude 103
3.2 Hydrostatic Equation 104
3.3 Relation Between Geopotential and Geometric Altitudes 106
3.4 Definition of the Standard Atmosphere 107
3.5 Pressure, Temperature, and Density Altitudes 114
3.6 Historical Note: The Standard Atmosphere 117
3.7 Summary 119
Bibliography 120
Problems 120
Chapter 4
Basic Aerodynamics 122

4.1 Continuity Equation 126
4.2 Incompressible and Compressible Flow 127
4.3 Momentum Equation 130
4.4 A Comment 134
4.5 Elementary Thermodynamics 141
4.6 Isentropic Flow 147
4.7 Energy Equation 152
4.8 Summary of Equations 155
4.9 Speed of Sound 156
4.10 Low-Speed Subsonic Wind Tunnels 162
4.11 Measurement of Airspeed 168
4.11.1 Incompressible Flow 171
4.11.2 Subsonic Compressible Flow 174
4.11.3 Supersonic Flow 178
4.11.4 Summary 182
4.12 Some Additional Considerations 183
4.12.1 More on Incompressible Flow 183
4.12.2 More on Equivalent Airspeed 185
4.13 Supersonic Wind Tunnels and Rocket Engines 187
4.14 Discussion of Compressibility 195
4.15 Introduction to Viscous Flow 196
4.16 Results for a Laminar Boundary Layer 205
4.17 Results for a Turbulent Boundary Layer 210
4.18 Compressibility Effects on Skin Friction 213
4.19 Transition 216
4.20 Flow Separation 219
4.21 Summary of Viscous Effects on Drag 224
4.22 Historical Note: Bernoulli and Euler 225
4.23 Historical Note: The Pitot Tube 226
4.24 Historical Note: The First Wind Tunnels 229
4.25 Historical Note: Osborne Reynolds and His Number 235
4.26 Historical Note: Prandtl and the Development of the Boundary Layer Concept 239
4.27 Summary 242
Bibliography 244
Problems 245

Chapter 5
Airfoils, Wings, and Other Aerodynamic Shapes 251

5.1 Introduction 251
5.2 Airfoil Nomenclature 253
5.3 Lift, Drag, and Moment Coefficients 257
5.4 Airfoil Data 263
5.5 Infinite Versus Finite Wings 271
5.6 Pressure Coefficient 273
5.7 Obtaining Lift Coefficient from C_p 278
5.8 Compressibility Correction for Lift Coefficient 282
5.9 Critical Mach Number and Critical Pressure Coefficient 283
5.10 Drag-Divergence Mach Number 294
5.11 Wave Drag (at Supersonic Speeds) 302
5.12 Summary of Airfoil Drag 310
5.13 Finite Wings 312
5.14 Calculation of Induced Drag 315
5.15 Change in the Lift Slope 321
5.16 Swept Wings 329
5.17 Flaps—A Mechanism for High Lift 342
5.18 Aerodynamics of Cylinders and Spheres 348
5.19 How Lift Is Produced—Some Alternate Explanations 352
5.20 Historical Note: Airfoils and Wings 362
5.20.1 The Wright Brothers 363
5.20.2 British and U.S. Airfoils (1910 to 1920) 363
5.20.3 1920 to 1930 364
5.20.4 Early NACA Four-Digit Airfoils 364
Chapter 6

Elements of Airplane Performance 385

6.1 Introduction: The Drag Polar 385
6.2 Equations of Motion 392
6.3 Thrust Required for Level, Unaccelerated Flight 394
6.4 Thrust Available and Maximum Velocity 402
6.5 Power Required for Level, Unaccelerated Flight 405
6.6 Power Available and Maximum Velocity 410

- **6.6.1 Reciprocating Engine–Propeller Combination** 410
- **6.6.2 Jet Engine** 413
6.7 Altitude Effects on Power Required and Available 414
6.8 Rate of Climb 419
6.9 Gliding Flight 428
6.10 Absolute and Service Ceilings 432
6.11 Time to Climb 435
6.12 Range and Endurance—Propeller-Driven Airplane 436

- **6.12.1 Physical Considerations** 437
- **6.12.2 Quantitative Formulation** 438
- **6.12.3 Breguet Formulas (Propeller-Driven Airplane)** 440
6.13 Range and Endurance—Jet Airplane 444

- **6.13.1 Physical Considerations** 445
- **6.13.2 Quantitative Formulation** 446
6.14 Relations Between $C_{D,0}$ and $C_{D,i}$ 450
6.15 Takeoff Performance 458
6.16 Landing Performance 464
6.17 Turning Flight and the V-n Diagram 467
6.18 Accelerated Rate of Climb (Energy Method) 474
6.19 Special Considerations for Supersonic Airplanes 481
6.20 Uninhabited Aerial Vehicles (UAVs) 485
6.21 A Comment, and More on the Aspect Ratio 494
6.22 Historical Note: Drag Reduction—The NACA Cowling and the Fillet 494
6.23 Historical Note: Early Predictions of Airplane Performance 499
6.24 Historical Note: Breguet and the Range Formula 500
6.25 Historical Note: Aircraft Design—Evolution and Revolution 501
6.26 Summary 507

Bibliography 509

Problems 510

Chapter 7

Principles of Stability and Control 513

7.1 Introduction 513
7.2 Definition of Stability and Control 519

- **7.2.1 Static Stability** 520
- **7.2.2 Dynamic Stability** 521
- **7.2.3 Control** 523
- **7.2.4 Partial Derivative** 523
7.3 Moments on the Airplane 524
7.4 Absolute Angle of Attack 525
7.5 Criteria for Longitudinal Static Stability 527
7.6 Quantitative Discussion: Contribution of the Wing to M_{cg} 532
Chapter 7

Contribution of the Tail to M_{cg} 536
Total Pitching Moment About the Center of Gravity 539
Equations for Longitudinal Static Stability 541
Neutral Point 543
Static Margin 544
Concept of Static Longitudinal Control 548
Calculation of Elevator Angle to Trim 553
Stick-Fixed Versus Stick-Free Static Stability 555
Elevator Hinge Moment 556
Stick-Free Longitudinal Static Stability 558
Directional Static Stability 562
Lateral Static Stability 563
A Comment 565
Historical Note: The Wright Brothers Versus the European Philosophy on Stability and Control 566
Historical Note: The Development of Flight Controls 567
Historical Note: The "Tuck-Under" Problem 569
Summary 570

Chapter 8

Space Flight (Astronautics) 573
Introduction 573
Differential Equations 580
Lagrange's Equation 581
Orbit Equation 584
Force and Energy 584
Equation of Motion 586
Space Vehicle Trajectories—Some Basic Aspects 590

Chapter 9

Propulsion 639
Introduction 639
Propeller 642
Reciprocating Engine 650
Jet Propulsion—The Thrust Equation 660
Turbojet Engine 663
Turbofan Engine 668
Ramjet Engine 670
Rocket Engine 674
Rocket Propellants—Some Considerations 681
Liquid Propellants 681
Solid Propellants 684
A Comment 686
Rocket Equation 687
Rocket Staging 688
9.12 Electric Propulsion 692
 9.12.1 Electron-Ion Thruster 693
 9.12.2 Magnetoplasmadynamic Thruster 694
 9.12.3 Arc-Jet Thruster 694
 9.12.4 A Comment 694

9.13 Historical Note: Early Propeller Development 695

9.14 Historical Note: Early Development of the Internal Combustion Engine for Aviation 698

9.15 Historical Note: Inventors of Early Jet Engines 700

9.16 Historical Note: Early History of Rocket Engines 703

9.17 Summary 709

 Bibliography 710
 Problems 710

Chapter 10
Flight Vehicle Structures and Materials 713

10.1 Introduction 713

10.2 Some Physics of Solid Materials 714
 10.2.1 Stress 714
 10.2.2 Strain 716
 10.2.3 Other Cases 717
 10.2.4 Stress–Strain Diagram 718

10.3 Some Elements of an Aircraft Structure 721

10.4 Materials 724

10.5 Fatigue 728

10.6 Some Comments 729

 Bibliography 729
 Problems 730

Chapter 11
Hypersonic Vehicles 731

11.1 Introduction 731

11.2 Physical Aspects of Hypersonic Flow
 11.2.1 Thin Shock Layers 735
 11.2.2 Entropy Layer 736
 11.2.3 Viscous Interaction 737
 11.2.4 High-Temperature Effects 738
 11.2.5 Low-Density Flow 739
 11.2.6 Recapitulation 743

11.3 Newtonian Law for Hypersonic Flow 743

11.4 Some Comments on Hypersonic Airplanes 749

11.5 Summary 758

 Bibliography 758
 Problems 758

Appendix A Standard Atmosphere, SI Units 760

Appendix B Standard Atmosphere, English Engineering Units 770

Appendix C Symbols and Conversion Factors 778

Appendix D Airfoil Data 779

Index 808