CONTENTS

Preface xi
Acknowledgments xiii

1. Overview of Aerodynamics 1
 1.1. Introduction and Notation 1
 1.2. Fluid Statics and the Atmosphere 6
 1.3. The Boundary Layer Concept 10
 1.4. Inviscid Aerodynamics 12
 1.5. Review of Elementary Potential Flows 16
 1.6. Incompressible Flow over Airfoils 22
 1.7. Trailing-Edge Flaps and Section Flap Effectiveness 35
 1.8. Incompressible Flow over Finite Wings 42
 1.9. Flow over Multiple Lifting Surfaces 79
 1.10. Inviscid Compressible Aerodynamics 93
 1.11. Compressible Subsonic Flow 96
 1.12. Supersonic Flow 101
 1.13. Problems 108

2. Overview of Propulsion 115
 2.1. Introduction 115
 2.2. The Propeller 130
 2.3. Propeller Blade Theory 135
 2.4. Propeller Momentum Theory 164
 2.5. Off-Axis Forces and Moments Developed by a Propeller 178
 2.6. Turbojet Engines: The Thrust Equation 190
 2.7. Turbojet Engines: Cycle Analysis 195
 2.8. The Turbojet Engine with Afterburner 203
 2.9. Turbofan Engines 207
 2.10. Concluding Remarks 215
 2.11. Problems 216

3. Aircraft Performance 221
 3.1. Introduction 221
 3.2. Thrust Required 222
 3.3. Power Required 232
 3.4. Rate of Climb and Power Available 239
 3.5. Fuel Consumption and Endurance 249
 3.6. Fuel Consumption and Range 257
 3.7. Power Failure and Gliding Flight 268
 3.8. Airspeed, Wing Loading, and Stall 279
3.9. The Steady Coordinated Turn 281
3.10. Takeoff and Landing Performance 299
3.11. Accelerating Climb and Balanced Field Length 315
3.12. Problems 327

4. Longitudinal Static Stability and Trim 339
4.1. Fundamentals of Static Equilibrium and Stability 339
4.2. Pitch Stability of a Cambered Wing 343
4.3. Simplified Pitch Stability Analysis for a Wing-Tail Combination 346
4.4. Stick-Fixed Neutral Point and Static Margin 362
4.5. Estimating the Downwash Angle on an Aft Tail 371
4.6. Simplified Pitch Stability Analysis for a Wing-Canard Combination 381
4.7. Effects of Drag and Vertical Offset 396
4.8. Contribution of the Fuselage and Nacelles 416
4.9. Contribution of Running Propellers 420
4.10. Contribution of Jet Engines 426
4.11. Problems 430

5. Lateral Static Stability and Trim 441
5.1. Introduction 441
5.2. Yaw Stability and Trim 444
5.3. Estimating the Sidewash Gradient on a Vertical Tail 462
5.4. Estimating the Lift Slope for a Vertical Tail 469
5.5. Roll Stability and Dihedral Effect 473
5.6. Roll Control and Trim Requirements 489
5.7. Longitudinal-Lateral Coupling 495
5.8. Control Surface Sign Conventions 496
5.9. Problems 497

6. Aircraft Controls and Maneuverability 503
6.1. Longitudinal Control and Maneuverability 503
6.2. Effects of Structural Flexibility 514
6.3. Control Force and Trim Tabs 523
6.4. Stick-Free Neutral and Maneuver Points 535
6.5. Ground Effect, Elevator Sizing, and CG Limits 537
6.6. Stall Recovery 549
6.7. Lateral Control and Maneuverability 554
6.8. Aileron Reversal 565
6.9. Other Control Surface Configurations 568
6.10. Airplane Spin 577
6.11. Problems 590

7. Aircraft Equations of Motion 599
7.1. Introduction 599
7.2. Newton’s Second Law for Rigid-Body Dynamics 609
<table>
<thead>
<tr>
<th>11.6.</th>
<th>Quaternion Algebra</th>
<th>878</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.7.</td>
<td>Relations between the Quaternion and Other Attitude Descriptors</td>
<td>882</td>
</tr>
<tr>
<td>11.8.</td>
<td>Applying Rotational Constraints to the Quaternion Formulation</td>
<td>891</td>
</tr>
<tr>
<td>11.9.</td>
<td>Closed-Form Quaternion Solution for Constant Rotation</td>
<td>893</td>
</tr>
<tr>
<td>11.10.</td>
<td>Numerical Integration of the Quaternion Formulation</td>
<td>899</td>
</tr>
<tr>
<td>11.11.</td>
<td>Summary of the Flat-Earth Quaternion Formulation</td>
<td>915</td>
</tr>
<tr>
<td>11.12.</td>
<td>Aircraft Position in Geographic Coordinates</td>
<td>922</td>
</tr>
<tr>
<td>11.13.</td>
<td>Problems</td>
<td>928</td>
</tr>
</tbody>
</table>

Bibliography

Appendixes

| A | Standard Atmosphere, SI Units | 941 |
| B | Standard Atmosphere, English Units | 942 |

Index 943