Research Perspectives

Traffic loading on highway bridges

Peter Dawe
Contents

Author's biography xi
About TRL xiii
Foreword xv
Acknowledgements xvii
Conversion table xix

Chapter 1 Introduction 1
1.1 Historical overview 1
1.2 Scope of contents 2
1.3 Choice of loading model 3
1.4 Influences on loading rules 4
1.5 Development of standards 5
1.6 Future developments 7
References 10

Chapter 2 Historical review: Part 1, 1911–54 11
2.1 Concrete Institute Report 1918 11
2.2 Ministry of Transport Standard Loading Train, 1922 13
2.3 Ministry of Transport Equivalent Loading Curve, 1931 13
2.4 BS 153 Standard specification for girder bridges, 1923 15
2.5 BS 153 Standard specification for girder bridges -1937 revision 17
2.6 Code of practice for simply supported steel bridges, 1949 18
2.7 Ministry of War Transport Memorandum No. 577, 1945 20
References 20

Chapter 3 Historical review: Part 2, 1954–78 21
3.1 BS 153: Part 3A: 1954 21
 3.1.1 Loading models 21
 3.1.2 Normal loading curve 22
Chapter 3
Traffic loading on highway bridges

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.3</td>
<td>Short-span members</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Concrete slabs</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Notional traffic lanes</td>
</tr>
<tr>
<td>3.1.6</td>
<td>Abnormal loading</td>
</tr>
<tr>
<td>3.1.7</td>
<td>Braking forces</td>
</tr>
<tr>
<td>3.1.8</td>
<td>Footways</td>
</tr>
<tr>
<td>3.2</td>
<td>Ministry of Transport Memorandum No. 771, 1961</td>
</tr>
<tr>
<td>3.3</td>
<td>Ministry of Transport Interim Memorandum (bridges) IM 10, 1970</td>
</tr>
<tr>
<td>3.4</td>
<td>BS 153: Part 3A: 1972</td>
</tr>
<tr>
<td>3.5</td>
<td>Department of the Environment Technical Memorandum (bridges) BE 5/73</td>
</tr>
<tr>
<td>3.6</td>
<td>Interim design and workmanship rules Part 1: Loading and general design requirements, 1973</td>
</tr>
<tr>
<td>3.7</td>
<td>Department of Transport Technical Memorandum (bridges) BE 1/77, 1977</td>
</tr>
</tbody>
</table>

Chapter 4
Limit state design

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>BS 5400: Part 2: 1978</td>
</tr>
<tr>
<td>4.2</td>
<td>Limit state design</td>
</tr>
<tr>
<td>4.3</td>
<td>HA loading curve</td>
</tr>
<tr>
<td>4.4</td>
<td>HB vehicle</td>
</tr>
<tr>
<td>4.5</td>
<td>Application of HA and HB loading</td>
</tr>
<tr>
<td>4.6</td>
<td>Partial load factors</td>
</tr>
<tr>
<td>4.7</td>
<td>Load combinations</td>
</tr>
<tr>
<td>4.8</td>
<td>Centrifugal force</td>
</tr>
<tr>
<td>4.9</td>
<td>Braking loads</td>
</tr>
<tr>
<td>4.10</td>
<td>Skidding loads</td>
</tr>
<tr>
<td>4.11</td>
<td>Collision loads</td>
</tr>
<tr>
<td>4.12</td>
<td>Department of Transport, Departmental standard BD 14/82, 1982</td>
</tr>
<tr>
<td>4.13</td>
<td>Department of Transport's Interim revised loading specification, 1982</td>
</tr>
</tbody>
</table>

Chapter 5
Revision of HA Type loading—1. Short span

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Background</td>
</tr>
<tr>
<td>5.2</td>
<td>Methodology</td>
</tr>
<tr>
<td>5.2.1</td>
<td>C&U vehicle loading and impact</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Overloading</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Lateral bunching</td>
</tr>
<tr>
<td>5.3</td>
<td>Derivation of loading</td>
</tr>
<tr>
<td>5.4</td>
<td>Future European vehicles</td>
</tr>
</tbody>
</table>

Chapter 6
Revision of Type HA loading—2. Long span

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Background</td>
</tr>
<tr>
<td>6.2</td>
<td>Outline of loading study</td>
</tr>
</tbody>
</table>
6.3 Data used in study
6.3.1 Vehicle weights and lengths
6.3.2 Proportions of different vehicle types
6.3.3 Variation in average vehicle weights through the day
6.3.4 Spacing between vehicles
6.4 Characteristics of traffic jams
6.5 Vehicle lane selection
6.6 Projections of traffic growth to 1990
6.7 Generation of traffic streams
6.8 Determination of equivalent uniformly distributed load
6.8.1 Method
6.8.2 Normal distribution
6.8.3 Extremal distribution
6.8.4 Lane load factors
6.9 Sensitivity studies
6.9.1 Percentages of heavy goods vehicles
6.9.2 Jam frequencies and duration
6.9.3 Traffic flow rate
6.9.4 Vehicle spacing
6.9.5 Lane distribution
6.10 Design values
References

Chapter 7 Composite version of BS 5400: Part 2
7.1 Background
7.2 Type HA loading
7.3 Type HB loading
7.4 HA lane factors
7.5 Load combinations and partial factors
7.6 Accidental wheel loading
7.7 Loads due to vehicle collisions with parapets
7.8 Secondary live loads
7.9 Department of Transport implementation
7.10 Design manual for roads and bridges, BD 37/01
References

Chapter 8 Short-span assessment loading
8.1 Background
8.2 Outline of methodology
8.3 Static load models
8.3.1 Vehicle data
8.3.2 Traffic modelling
8.4 Dynamic load model
8.4.1 Data
8.4.2 Dynamic effect model
8.5 Probabilistic load model
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.6</td>
<td>Loading models for STGO vehicles</td>
<td>105</td>
</tr>
<tr>
<td>10.7</td>
<td>Loading model for SO vehicles</td>
<td>106</td>
</tr>
<tr>
<td>10.8</td>
<td>Development of loading model for abnormal vehicle effects</td>
<td>108</td>
</tr>
<tr>
<td>10.8.1</td>
<td>Background</td>
<td>108</td>
</tr>
<tr>
<td>10.8.2</td>
<td>Shortcomings of existing HB model</td>
<td>108</td>
</tr>
<tr>
<td>10.8.3</td>
<td>Development of SV loading model</td>
<td>109</td>
</tr>
<tr>
<td>10.8.4</td>
<td>Overload factor (OF)</td>
<td>110</td>
</tr>
<tr>
<td>10.8.5</td>
<td>Dynamic amplification factor (DAF)</td>
<td>111</td>
</tr>
<tr>
<td>10.8.6</td>
<td>Partial load factors</td>
<td>113</td>
</tr>
<tr>
<td>10.8.7</td>
<td>Masonry arches</td>
<td>113</td>
</tr>
<tr>
<td>10.9</td>
<td>Design manual for roads and bridges BD 86/01</td>
<td>113</td>
</tr>
<tr>
<td>10.9.1</td>
<td>Background</td>
<td>113</td>
</tr>
<tr>
<td>10.9.2</td>
<td>Loading</td>
<td>114</td>
</tr>
<tr>
<td>10.9.3</td>
<td>Application</td>
<td>114</td>
</tr>
<tr>
<td>10.9.4</td>
<td>Special structures</td>
<td>114</td>
</tr>
<tr>
<td>10.9.5</td>
<td>Reserve factors</td>
<td>114</td>
</tr>
<tr>
<td>10.9.6</td>
<td>HB-to-SV conversion charts</td>
<td>115</td>
</tr>
<tr>
<td>10.9.7</td>
<td>Management of STGO vehicle movements</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 11 **Collision loads**

11.1 Introduction 117
11.2 Early requirements 117
11.3 Bridge rehabilitation programme 118
11.4 Study of heavy goods vehicle collisions with highway structures 119
11.5 Design manual for roads and bridges BD 48/93 120
11.6 Design manual for roads and bridges BD 60/94 121
11.7 Computer simulation of heavy goods vehicles collisions with bridges 121
References 123

Chapter 12 **Control of traffic loading**

12.1 Introduction 125
12.2 Vehicle regulations 125
12.3 European vehicles 128
12.4 Traffic loading restrictions 130
12.5 Weight restrictions 130
References 131

Chapter 13 **Eurocodes**

13.1 Background 133
13.2 Development of ENV 1991-3 134
13.3 ENV 1991-3 [2], scope and contents 134
13.3.1 Load Model 1 134
13.3.2 Load Model 2 134
13.3.3 Load Model 3 135
13.3.4 Load Model 4
13.4 Derivation of Load Models 1 and 2
 13.4.1 Background
 13.4.2 Methodology
 13.4.3 Extrapolation methods
 13.4.4 Dynamic effects
 13.4.5 Loading patterns
 13.4.6 Influence lines
 13.4.7 Calibration of Load Model 1
 13.4.8 Load Model 2
13.5 Application of loading
 13.5.1 Lane widths
 13.5.2 Partial live load factors
 13.5.3 Load combinations
 13.5.4 Reduction factors
13.6 Other types of loading
 13.6.1 Accidental loads
 13.6.2 Braking
 13.6.3 Centrifugal force

References

Chapter 14 National Application Document (NAD) 147
 14.1 Background
 14.1.1 National requirements
 14.1.2 Calibration studies
 14.2 Initial parametric calibrations
 14.2.1 Scope
 14.2.2 Congested traffic
 14.2.3 Flowing traffic
 14.2.4 Adjustment factors—Load Model 1
 14.2.5 Adjustment factors—Load Model 2
 14.2.6 Reduction factors
 14.2.7 Abnormal vehicles—Load Model 3
 14.3 Final parametric calibrations
 14.3.1 Scope
 14.3.2 Adjustment factors (α)
 14.3.3 Reduction factors (ψ)
 14.3.4 Abnormal vehicles—Load Model 3
 14.3.5 Secondary loads—braking
 14.3.6 Secondary loads—centrifugal forces
 14.3.7 Accidental loads—collision forces on piers
 14.3.8 Accidental loads—vehicles on footways
 14.4 Published version of the UK NAD
 14.4.1 Introduction
 14.4.2 Partial safety factors (γ)
 14.4.3 Adjustment factors (α)