MATHEMATICAL THEORY
OF ELASTICITY

Richard B. Hetnarski

Department of Mechanical Engineering, Rochester Institute of Technology,
Rochester, New York, U.S.A.

Józef Ignaczak

Center of Mechanics, Institute of Fundamental Technological Research
Polish Academy of Sciences, Warsaw, Poland

Taylor & Francis

2004
Contents

Preface xvii
Notation xxi
Some Quantities in SI Units xxvii

1 Creators of the Theory of Elasticity 1
 1.1 Creators of the Theory of Elasticity 1

2 Mathematical Preliminaries 21
 2.1 Vectors and Tensors 21
 2.2 Scalar, Vector, and Tensor Fields 45
 2.3 Integral Theorems 51
 2.3.1 Divergence Theorem 51
 2.3.2 Stokes’ Theorem 52
 2.3.3 Theorems on Irrotational and Solenoidal Fields 55
 2.3.4 Time-Dependent Fields 57
 Problems 60

3 Fundamentals of Linear Elasticity 67
 3.1 Kinematics 67
 3.1.1 Deformation 67
 3.1.2 Infinitesimal Strain Field 72
 3.1.3 Compatibility 85
 3.2 Motion and Equilibrium 89
 3.2.1 Balance of Momentum. Stress Tensor 89
 3.2.2 Solutions of Elastostatics 107
 3.2.3 Properties of Solutions of Elastostatics 112
 3.2.4 Discussion on the Equations of Equilibrium 119
 3.2.5 Discussion of the Equations of Motion 124
 3.3 Constitutive Relations 131
 3.3.1 General Anisotropic Body 131
 3.3.2 Engineering Material Constants 136
CONTENTS

3.3.3 Alternative Forms of the Constitutive Relations for an Isotropic Body .. 142
3.3.4 Stored Energy of an Elastic Body 147
3.3.5 Stress-Strain-Temperature Relations for a Thermoelastic Body .. 158
Problems .. 163

4 Formulation of Problems of Elasticity 173

4.1 Boundary Value Problems of Elastostatics 173
4.1.1 Field Equations of Elastostatics 173
4.1.2 Field Equations of Thermoelastostatics with Prescribed Temperature .. 185
4.1.3 Concept of an Elastic State: Energy and Reciprocal Theorems ... 193
4.1.4 Formulation of Boundary Value Problems 202
4.1.5 Uniqueness ... 207

4.2 Initial Boundary Value Problems of Elastodynamics 208
4.2.1 Field Equations .. 208
4.2.2 Field Equations of Dynamic Theory of Thermal Stresses ... 219
4.2.3 Concept of an Elastic Process: Energy and Reciprocal Theorems .. 224
4.2.4 Formulation of Initial-Boundary Value Problems 228
4.2.5 Uniqueness ... 237
Problems .. 243

5 Variational Formulation of Elastostatics 253

5.1 Minimum Principles .. 253
5.1.1 The Principle of Minimum Potential Energy 253
5.1.2 The Rayleigh–Ritz Method ... 257
5.1.3 The Principle of Minimum Complementary Energy 261
5.1.4 The Principle of Minimum Complementary Energy for Nonisothermal Elasticity 269

5.2 Variational Principles .. 277
Problems .. 287
6 Variational Principles of Elastodynamics 297

6.1 The Hamilton–Kirchhoff Principle ... 297
6.2 Gurtin's Convolutional Variational Principles 312
 6.2.1 Dynamical Principles with Counterparts in Elastostatics 312
 6.2.2 Dynamical Principles without Counterparts in Elastostatics 326
Problems ... 334

7 Complete Solutions of Elasticity 343

7.1 Complete Solutions of Elastostatics ... 343
7.2 Complete Solutions of Elastodynamics 364
Problems ... 380

8 Formulation of Two-Dimensional Problems 387

8.1 Two-Dimensional Problems of Elastostatics 387
 8.1.1 Two-Dimensional Problems of Isothermal Elastostatics 387
 8.1.2 Two-Dimensional Problems of Nonisothermal Elastostatics 397
8.2 Two-Dimensional Problems of Elastodynamics 411
 8.2.1 Two-Dimensional Problems of Isothermal Elastodynamics 411
 8.2.2 Two-Dimensional Problems of Nonisothermal Elastodynamics . 416
Problems ... 432

9 Solutions to Particular Three-Dimensional Boundary Value Problems of Elastostatics 437

9.1 Three-Dimensional Solutions of Isothermal Elastostatics 437
 9.1.1 An Elastic State in a Homogeneous Isotropic Semispance Subject to a Concentrated Force Normal to Its Boundary—Boussinesq’s Solution 438
 9.1.2 An Elastic State in a Homogeneous Isotropic Semispance Subject to a Concentrated Force Tangent to Its Boundary—Cerruti’s Solution 449
9.2 Three-Dimensional Solutions of Nonisothermal Elastostatics ... 461
 9.2.1 A Thermoelastic State due to the Action of a Point Source of Heat in an Infinite Body 462
 9.2.2 A Thermoelastic State in a Homogeneous Isotropic Semi-Infinite Body Caused by an Internal Source of Heat ... 467
 9.2.3 Thermoelastic State in a Semispace Caused by a Boundary Heat Exposure 480
9.3 Torsion Problem .. 500
 9.3.1 Torsion of Circular Prismatic Bars .. 500
 9.3.2 Torsion of Noncircular Prismatic Bars .. 504
 9.3.3 The Prandtl's Stress Function ... 511
 Problems ... 517

10 Solutions to Particular Two-Dimensional Boundary Value Problems of Elastostatics 519
 10.1 Two-Dimensional Solutions of Isothermal Elastostatics .. 519
 10.1.1 A Concentrated Force in an Infinite Elastic Body Under Plane Strain Conditions 520
 10.1.2 A Concentrated Force Normal to the Boundary of a Semi-Infinite Solid 527
 10.1.3 A Concentrated Force Tangent to the Boundary of a Semi-Infinite Solid 536
 10.1.4 The Lamé Solution for a Thin Hollow Circular Disk ... 541
 10.1.5 Axially Symmetric Elastic State in a Rotating Thin Hollow Circular Disk 548
 10.1.6 A Sheet with a Circular Hole Subject to Uniform Tension at Infinity (Kirsch's Problem) 552
 10.2 Two-Dimensional Solutions of Nonisothermal Elastostatics ... 565
 10.2.1 Two Methods of Finding a Solution to a Boundary Value Problem for a Thin Thermoelastic Sheet ... 565
 10.2.2 A Thermoelastic State due to a Discontinuous Temperature Field in an Infinite Sheet 569
10.2.3 Thermal Stresses due to a Discontinuous Temperature Field in a Semi-Infinite Thermoelastic Sheet 578
10.2.4 A Thermoelastic State due to a Heat Source at the Center of a Thin Circular Disk 589
10.2.5 Thermal Stresses due to a Concentrated Heat Source in a Semi-Infinite Sheet 595
Problems ... 604

11 Solutions to Particular Three-Dimensional Initial-Boundary Value Problems of Elastodynamics 609

11.1 Three-Dimensional Solutions of Isothermal Elastodynamics .. 609
11.1.1 The Plane Progressive Waves in a Homogeneous Anisotropic Elastic Unbounded Body 610
11.1.2 Elastic Waves in a Homogeneous Isotropic Infinite Solid due to the Application of an Instantaneous Concentrated Force ... 623
11.1.3 The Elastic Waves Produced by a Moving Point Force in an Infinite Solid 631
11.1.4 The Stress Waves due to the Initial Stress and Stress-Rate Fields in an Unbounded Solid 644
11.1.5 The Elastic Waves Generated by a Pressurization of a Spherical Cavity in an Infinite Body 664

11.2 Three-Dimensional Solutions of Nonisothermal Elastodynamics .. 677
11.2.1 Dynamic Thermal Stresses Produced by an Instantaneous Concentrated Source of Heat in an Infinite Body ... 678
11.2.2 Harmonic Vibrations of an Infinite Elastic Body Produced by a Concentrated Source of Heat 688
11.2.3 Dynamic Thermal Stresses Produced by an Instantaneous Spherical Temperature Inclusion in an Infinite Body ... 692

11.3 Saint-Venant’s Principle of Elastodynamics in Terms of Stresses ... 705
Problems ... 714
12 Solutions to Particular Two-Dimensional Initial-Boundary Value Problems of Elastodynamics 717

12.1 Two-Dimensional Solutions of Isothermal Elastodynamics . . 717

12.1.1 Two-Dimensional Plane Progressive Waves in a Homogeneous Isotropic Infinite Elastic Body 718

12.1.2 The Surface Waves Propagating in a Homogeneous Isotropic Elastic Semispace—Rayleigh Waves 728

12.1.3 The Propagation of SH Waves in a Semispace Overlaid by a Solid Layer—Love Waves 735

12.1.4 The Stress Waves Produced by the Initial Stress and Stress-Rate Fields in E^2 741

12.2 Two-Dimensional Solutions of Nonisothermal Elastodynamics ... 752

12.2.1 Dynamic Thermal Stresses in an Infinite Elastic Sheet Subject to a Discontinuous Temperature Field........ 753

12.2.2 Dynamic Thermal Stresses Produced by an Instantaneous Concentrated Source of Heat in an Infinite Elastic Sheet ... 757

Problems .. 768

13 One-Dimensional Solutions of Elastodynamics 771

13.1 One-Dimensional Solutions of Isothermal Elastodynamics . . 771

13.1.1 One-Dimensional Stress Waves in an Infinite Elastic Solid Subject to the Initial Stress and Stress-Rate Fields ... 773

13.1.2 One-Dimensional Stress Waves in an Infinite Elastic Solid Subject to a Body Force Field 778

13.1.3 One-Dimensional Stress Waves in a Half-Space with Free Boundary Subject to the Initial Stress and Stress-Rate Fields 780

13.1.4 One-Dimensional Stress Waves in a Half-Space with Free Boundary Subject to a Body Force Field 784

13.1.5 One-Dimensional Stress Waves in a Half-Space Subject to a Uniform Dynamic Boundary Pressure 785

13.1.6 One-Dimensional Stress Waves in a Finite Strip with Free Boundaries Subject to the Initial Stress and Stress-Rate Fields 787
13.2 One-Dimensional Solutions of Nonisothermal Elastodynamics .. 789

13.2.1 Dynamic Thermal Stresses in an Infinite Elastic Solid Subject to a Plane Instantaneous Heat Source 792

13.2.2 Dynamic Thermal Stresses in a Half-Space with Free Boundary Subject to an Instantaneous Internal Plane Heat Source .. 797

13.2.3 Dynamic Thermal Stresses in a Half-Space Subject to a Sudden Heating of the Boundary Plane—Danilovskaya Problem ... 801

Problems .. 806

A Name Index .. 809

B Subject Index .. 811