BRIEF CONTENTS

Chapter 1 The World of Plants
 The Importance of Plants
 Plant Characteristics and Diversity
 Botany and the Scientific Method

Unit One
THE STRUCTURE
OF PLANTS

Chapter 2 Cell Structure and the Cell Cycle
 An Overview of Cells
 Major Plant Cell Organelles
 The Cytoskeleton: Controlling Cell Shape and Movement
 Membranes and Cell Walls
 The Cell Cycle and Cell Division

Chapter 3 An Introduction to Plant Structure
 Basic Types of Plant Cells
 Tissues of Vascular Plants
 An Overview of Vascular Plant Organs
 An Overview of Plant Growth and Development

Chapter 4 Roots, Stems, and Leaves:
The Primary Plant Body
 Roots
 Stems
 Leaves

Chapter 5 Secondary Growth in Plants
 Secondary Growth: An Overview
 Growth Patterns in Wood and Bark
 Commercial Uses of Wood and Bark

Chapter 6 Life Cycles and Reproductive Structures
 Plant Reproduction: An Overview
 Meiosis and Alternation of Generations
 Cone and Flower Structure
 Seed Structure
 Fruit Structure

Unit Two
THE FUNCTIONS
OF PLANTS

Chapter 7 Basic Plant Biochemistry
 The Molecular Components of Living Organisms
 Energy and Chemical Reactions
 Chemical Reactions and Enzymes

Chapter 8 Photosynthesis
 An Overview of Photosynthesis
 Converting Light Energy to Chemical Energy: The Light Reactions
 Converting CO₂ to Sugars: The Calvin Cycle

Chapter 9 Respiration
 An Overview of Nutrition
 Respiration
 Fermentation

Chapter 10 Transport in Plants
 Molecular Movement Across Membranes
 Movement and Uptake of Water and Solutes in Plants
 Soil, Minerals, and Plant Nutrition

Chapter 11 Plant Responses to Hormones and Environmental Stimuli
 Effects of Hormones
 Responses to Light
 Responses to Other Environmental Stimuli

Unit Three
GENETICS AND
GENE EXPRESSION

Chapter 12 Genetics
 Mendel's Experiments on Inheritance
 Beyond Mendel's Work
Chapter 13 Gene Expression and Activation
Gene Expression
Differential Gene Expression
Identifying Genes That Affect Development

Chapter 14 Plant Biotechnology
The Methods of Plant Biotechnology
The Accomplishments and Opportunities of Plant Biotechnology

Unit Four
EVOLUTION AND DIVERSITY

Chapter 15 Evolution
History of Evolution on Earth
Mechanisms of Evolution
The Origin of Species

Chapter 16 Classification
Classification Before Darwin
Classification and Evolution
Major Groups of Organisms
The Future of Classification

Chapter 17 Viruses and Prokaryotes
Viruses and the Botanical World
Prokaryotes and the Botanical World

Chapter 18 Algae
Characteristics and Evolution of Algae
Unicellular and Colonial Algae
Multicellular Algae

Chapter 19 Fungi
Characteristics and Evolutionary History of Fungi
The Diversity of Fungi
Fungal Associations with Other Organisms

Chapter 20 Bryophytes
An Overview of Bryophytes
Liverworts: Phylum Hepatophyta
Hornworts: Phylum Anthocerophyta
Mosses: Phylum Bryophyta

Chapter 21 Seedless Vascular Plants
The Evolution of Seedless Vascular Plants
Types of Living Seedless Vascular Plants

Chapter 22 Gymnosperms
An Overview of Gymnosperms
Types of Living Gymnosperms

Chapter 23 Angiosperms: Flowering Plants
Sexual Reproduction in Flowering Plants
The Evolution of Flowers and Fruits
A Sampling of Angiosperm Diversity

Unit Five
ECOLOGY

Chapter 24 Ecology and the Biosphere
Abiotic Factors in Ecology
Ecosystems

Chapter 25 Ecosystem Dynamics:
How Ecosystems Work
Populations
Interactions Between Organisms in Ecosystems
Communities and Ecosystems

Chapter 26 Conservation Biology
Human Population Growth
Human Impacts on Ecosystems
The Future

Appendix A Basic Chemistry
Appendix B Metric Conversions
Appendix C Classification of Life
Credits
Glossary
Index
Contents

1 The World of Plants 1

The Importance of Plants 3
- Photosynthesis sustains life on Earth 3
- Plants are our fundamental source of food 4
- Many medicines come from plants 6
- Plants provide fuel, shelter, and paper products 6
- Conservation biology is a critical area of research 7
- Biotechnology seeks to develop new plant products 8

Plant Characteristics and Diversity 11
- A set of characteristics distinguishes plants from other organisms 11
- Mosses are among the simplest types of plants 12
- Ferns and their relatives are examples of seedless vascular plants 14
- Pine trees and other conifers are examples of nonflowering seed plants 15
- Most plants are flowering plants with seeds protected in fruits 15

Botany and the Scientific Method 15
- Botanists, like other scientists, test hypotheses 15
- Botany includes many fields of study 19
- Botanists also study algae, fungi, and disease-causing microorganisms 19

Summary 20

Review Questions 21

Questions for Thought and Discussion 21

Evolution Connection 21

To Learn More 22

PLANTS & PEOPLE: A Taste of Tea History 5

THE INTRIGUING WORLD OF PLANTS: 7
- Black Pepper: Savior of Rotting Meat

CONSERVATION BIOLOGY: 9
- The Challenge of Forest Conservation

BIOTECHNOLOGY: Using Plants to Battle Bacteria 10

Unit One

THE STRUCTURE OF PLANTS 23

2 Cell Structure and the Cell Cycle 25

An Overview of Cells 27
- Microscopes reveal the world of the cell 27
- The cell is the basis of an organism's structure and reproduction 27
- All cells are either prokaryotic or eukaryotic 29
- Cells produce nucleic acids, proteins, carbohydrates, and lipids 30

Major Plant Cell Organelles 31
- The nucleus provides DNA “blueprints” for making proteins 31
- Ribosomes build proteins 31
- The endoplasmic reticulum is the site of most protein and lipid synthesis 32
- The Golgi apparatus completes and ships cell products 32
- Chloroplasts in green plant cells convert solar energy into stored chemical energy 33
- Mitochondria convert stored energy into energy to power the cell 34
- Microbodies aid in chemical reactions 34
- Vacuoles play a variety of roles in cell metabolism and cell shape 35

The Cytoskeleton: Controlling Cell Shape and Movement 36
- Microtubules play an important role in cell movements 36
- Microfilaments help living cells change shape 36
- Motor proteins, or “walking molecules,” cause movement 36
- Intermediate filaments help determine the permanent structure of cells 37
Membranes and Cell Walls 38
Membranes are gatekeeping barriers around and within cells 38
Cell walls protect plant cells and define cell shape 39
Plasmodesmata are channels that connect plant cells 39

The Cell Cycle and Cell Division 40
The cell cycle describes the phases of a cell's life 41
Mitosis and cell division are involved in growth and reproduction 43
Mitosis produces two daughter nuclei, each containing the same chromosome number as the original cell 43
New cells typically become specialized 43

Summary 45

Review Questions 46

Questions for Thought and Discussion 47

Evolution Connection 47

To Learn More 47

Plants & People: Pioneers of Microscopy 28

The Intriguing World of Plants: Using Plant Cell Cultures 42

3 An Introduction to Plant Structure 48

Basic Types of Plant Cells 50
Parenchyma cells are the most common type of living differentiated cell 50
Collenchyma cells provide flexible support 50
Sclerenchyma cells provide rigid support 51

Tissues of Vascular Plants 52
The dermal tissue system forms the plant's outer protective covering 53
The vascular tissue system conducts water, minerals, and food 54
Ground tissue usually forms between dermal and vascular tissues 58

An Overview of Vascular Plant Organs 59
Stems position leaves for maximum photosynthesis 59
Leaves function in both photosynthesis and transpiration 60
Roots anchor the plant and absorb water and minerals 60

An Overview of Plant Growth and Development 61
Embryos give rise to stems, leaves, and roots of adult seed plants 61
Meristems enable plants to continue growing throughout their lives 62
Apical meristems initiate primary growth that makes roots and shoots longer 63
Botanists are discovering how genes control the formation of apical meristems 64
Apical meristems give rise to primary meristems, which produce primary tissues 65
Secondary growth from lateral meristems makes roots and stems thicker 65
Some plants live for one growing season while others live for two seasons or longer 66

Summary 67

Review Questions 68

Questions for Thought and Discussion 68

Evolution Connection 69

To Learn More 69

The Intriguing World of Plants: Flexible Fibers 53

Plants & People: Cotton through the Centuries 55

4 Roots, Stems, and Leaves: The Primary Plant Body 70

Roots 72
Taproot systems usually penetrate more deeply than fibrous root systems 72
Root development occurs near the root tip 73
The root cap protects the root apical meristem and helps the root penetrate the soil 73
Absorption of water and minerals occurs mainly through the root hairs 74
The primary structure of roots relates to obtaining water and dissolved minerals 74
Some roots have specialized functions in addition to anchoring the plant and absorbing water and minerals 76
Roots have cooperative relationships with other organisms 77
Stems
Botanists have developed zone and cell-layer models to describe stem growth.
In primary growth of most stems, the vascular tissue forms separate bundles.
A transition region maintains vascular continuity between the root and stem for a short distance.
Leaf primordia form in specific patterns on the sides of shoot apical meristems.
Stem variations reflect different evolutionary pathways.
Some stems have specialized functions in addition to support and conduction.

Leaves
A leaf primordium develops into a leaf through cell division, growth, and differentiation.
The leaf epidermis provides protection and regulates exchange of gas.
Mesophyll, the ground tissue in leaves, carries out photosynthesis.
The vascular tissue in leaves is arranged in veins.
Leaf shapes and arrangements have environmental significance.
Abscission zones form in the petioles of deciduous leaves.
Some leaves have specialized functions in addition to photosynthesis and transpiration.

Summary
Review Questions
Questions for Thought and Discussion
Evolution Connection
To Learn More

5 Secondary Growth in Plants
Secondary Growth: An Overview
Lateral meristems, cylinders of dividing cells, produce secondary vascular and secondary dermal tissue.
The vascular cambium produces secondary xylem (wood) and secondary phloem.
The cork cambium produces secondary dermal tissue.
Bark consists of all the tissues external to the vascular cambium.

Growth Patterns in Wood and Bark
The vascular cambium produces secondary xylem, secondary phloem, and ray parenchyma, as well as more vascular cambium.
Sapwood conducts water and minerals, but heartwood does not.
Growth rings in wood reflect the history of secondary growth in a tree.
Dendrochronology is the science of tree ring dating and climate interpretation.
Growth patterns in reaction wood counteract leaning.
The cork cambium is reformed as the stems and roots enlarge.
Lenticels are pathways in the bark for gas exchange.

Commercial Uses of Wood and Bark
Wood is used mainly for fuel, paper products, and construction.
Wood structure can be studied from three cutting planes.
Wood can vary in properties such as hardness and grain.
Latex, resin, and maple syrup are some products from wood fluids.
Commercial cork comes from the thick outer bark of some trees.
Trees are a renewable but limited natural resource.

Summary
Review Questions
Questions for Thought and Discussion
Evolution Connection
To Learn More
6 Life Cycles and Reproductive Structures 122

Plant Reproduction: An Overview 124
Asexual reproduction occurs through mitosis and results in offspring that are genetically identical to each other and the parent 124
Sexual reproduction results in genetic variation 124

Meiosis and Alternation of Generations 126
Daughter nuclei produced by meiosis have one copy of each chromosome 126
Plant sexual life cycles feature both haploid and diploid multicellular forms 128

Cone and Flower Structure 130
In gymnosperms, some apical meristems produce cones 131
In angiosperms, some apical meristems produce flowers 131
A flower can consist of up to four types of modified leaves 132
The number and symmetry of flower parts can vary 133
Flowers can vary in the position of their ovaries 134
Flower structures are examples of how natural selection modifies what is already present 134

Seed Structure 135
Seeds form from ovules on bracts of cones or in carpels of flowers 135
Seeds nourish and protect developing embryos 135
In seed germination, first the embryonic root grows through the seed coat, and then seedling formation begins 135

Fruit Structure 137
During seed development in a flowering plant, the ovary expands to become part or all of a fruit 137
Fruits can be categorized as simple, aggregate, or multiple 139
A number of mechanisms disperse seeds and fruits to new locations 141

Summary 143
Review Questions 144
Questions for Thought and Discussion 144

Evolution Connection 145
To Learn More 145

Biotechnology: Apomixis in Agriculture 137
The Intriguing World of Plants: Tropical Fruits 138

Unit Two
THE FUNCTIONS OF PLANTS 147

7 Basic Plant Biochemistry 149

The Molecular Components of Living Organisms 151
Carbohydrates, which supply and store energy and serve as structural building blocks, include sugars and polymers of sugars 151
Proteins, which catalyze reactions and are structural building blocks, are polymers of amino acids 154
The nucleic acids DNA and RNA, which code and express genetic information, are polymers of nucleotides 157
Lipids are membrane components consisting mainly of carbon and hydrogen atoms derived from acetates and other molecules 158
Secondary metabolites such as phenolics, alkaloids, and terpenoids often protect or strengthen plants 160

Energy and Chemical Reactions 163
Energy can be stored and can move or change matter 163
Chemical reactions involve either a net input or a net output of free energy 163
Redox reactions release energy as a result of movement of electrons between atoms or molecules 164
The terminal phosphate bond in ATP releases energy when broken 165
NADH, NADPH, and FADH2 are universal carriers of energy-rich electrons in living organisms 166
Chemical Reactions and Enzymes

- Collision theory describes product formation by reactions in gases or liquids
 - Page 167
- Enzymes position reactants, allowing reactions to occur with minimal activation energy or increase in temperature
 - Page 168
- Cofactors such as coenzymes interact with enzymes to assist reactions
 - Page 170
- Competitive and noncompetitive inhibition can slow or stop enzymatic reactions and pathways
 - Page 170
- Enzymatic reactions are linked together into metabolic pathways
 - Page 172

Converting CO₂ to Sugars: The Calvin Cycle

- The Calvin cycle uses ATP and NADPH from the light reactions to make sugar phosphates from CO₂
 - Page 185
- The Calvin cycle is relatively inefficient at converting CO₂ into sugars
 - Page 187
- The enzyme rubisco also functions as an oxygenase, resulting in photorespiration
 - Page 188
- The C₄ pathway limits the loss of carbon from photorespiration
 - Page 189
- CAM plants store CO₂ in a C₄ acid at night for use in the Calvin cycle during the day
 - Page 191

Summary

- Page 192

Review Questions

- Page 193

Questions for Thought and Discussion

- Page 194

Evolution Connection

- Page 194

To Learn More

- Page 194

The Intriguing World of Plants:

- Forests Made of Carbohydrates
 - Page 155
- Biotechnology: Weapons Against Weeds
 - Page 157
- Plants & People: Take Your Cofactors Every Day
 - Page 171

8 Photosynthesis

- Page 175

An Overview of Photosynthesis

- Photosynthesis produces food, molecular building blocks, and O₂, which support almost all life on Earth
 - Page 177
- Photosynthesis uses light energy to convert CO₂ and H₂O into sugars
 - Page 178
- The processes of photosynthesis and respiration are interdependent
 - Page 179

Converting Light Energy to Chemical Energy:

- The Light Reactions
 - Page 180
- Chlorophyll is the principal light-absorbing molecule of photosynthesis
 - Page 180
- Light energy enters photosynthesis at locations called photosystems
 - Page 182
- The light reactions produce O₂, ATP, and NADPH
 - Page 183
- In the light reactions, ATP is synthesized using energy from chemiosmosis
 - Page 184

Evolving Energy and Photosynthesis

- Page 186

The Intriguing World of Plants:

- Nonphotosynthetic Plants
 - Page 178

Evolution: Evolution and O₂ Concentration

- Page 189

9 Respiration

- Page 195

An Overview of Nutrition

- All living organisms need sources of energy and carbon
 - Page 197
- Plants use photosynthesis to store light energy in sugars and use respiration to transfer the energy from sugars to ATP
 - Page 197
- The breakdown of sugar to release energy can occur with or without oxygen
 - Page 198

Respiration

- Glycolysis splits six-carbon sugars into two molecules of pyruvate
 - Page 200
- The Krebs cycle generates CO₂, NADH, FADH₂, and ATP
 - Page 202
- The electron transport chain and oxidative phosphorylation transfer energy from the energy-rich electrons of NADH and FADH₂ to ATP
 - Page 202
- The energy yield from respiration is high
 - Page 205
- In some plants, the electron transport chain can generate excess heat
 - Page 206
- Plants, unlike animals, can make fatty acids into glucose
 - Page 207
Fermentation
In the absence of oxygen, pyruvate produced by glycolysis is converted to ethanol or lactate. Some important industries rely on fermentation. Fermentation has a low energy yield compared to that of respiration.

Summary

Review Questions

Questions for Thought and Discussion

Evolution Connection

To Learn More

Conservation Biology:
Global Warming and the Greenhouse Effect

Plants & People:
Sucrose and Fructose: Sweeteners of Choice

The Intriguing World of Plants:
Skunk Cabbage

10 Transport in Plants

Molecular Movement Across Membranes
Diffusion is the spontaneous movement of molecules down a concentration gradient. Facilitated diffusion and active transport use proteins to assist in movement across membranes. Exocytosis and endocytosis transport large molecules. Osmosis is the movement of water across a selectively permeable membrane. In plant cell growth, the osmotic potential inside the cell interacts with pressure generated by the cell wall.

Movement and Uptake of Water and Solutes in Plants
Water evaporation from leaves pulls water through the xylem from the roots. Stomata control gas exchange and water loss for the plant. Sugars and other organic molecules move from leaves to roots in the phloem.

Soil, Minerals, and Plant Nutrition
Soil is made of ground-up particles of rocks surrounded by negative charges that bind water and minerals.

Plants require 17 essential elements, most of which are obtained from soil. Soil particles bind water and mineral ions. Bacteria in the soil make nitrogen available to plants.

Summary

Review Questions

Questions for Thought and Discussion

Evolution Connection

To Learn More

The Intriguing World of Plants:
The Power of Plants

Biotechnology:
Water-Efficient Crops

Plants & People: Justus von Liebig—A Father of Modern Agriculture

11 Plant Responses to Hormones and Environmental Stimuli

Effects of Hormones
Auxin plays a central role in cell enlargement and formation of new tissue. Cytokinins control cell division and differentiation and also delay aging. Gibberellins interact with auxins to regulate cell enlargement and stimulate seed germination. Abscisic acid causes seed dormancy and regulates plant responses to drought. Ethylene allows the plant to respond to mechanical stress and controls fruit ripening and leaf abscission. Brassinosteroids are a newly discovered group of plant hormones that act like auxin. Additional compounds may play a role as plant hormones.

Responses to Light
Blue light absorption controls the growth of stems toward the light and the opening of stomata. Absorption of red and far-red light determines when seed germination, stem and root growth, and flowering occur.
CONTENTS

Photoperiodism regulates flowering and other seasonal responses 246
Plants respond to repeating cycles of day and night 249

Responses to Other Environmental Stimuli 250
Roots and shoots respond to gravity 250
Plants respond to mechanical stimuli, such as touch and wind 251
Plants prepare for environmental conditions that prevent normal metabolism and growth 251
Plants react to environmental stresses such as drought 253
Plants deter herbivores and pathogens 254
Summary 255
Review Questions 256
Questions for Thought and Discussion 256
Evolution Connection 257
To Learn More 257

Biotechnology: Effects of Auxin and Cytokinins on Cultured Plant Cells 241
The Intriguing World of Plants: Studying Photodormant Seeds 247
Evolution: The Arms Race Between Plants and Herbivores 253

Unit Three
GENETICS AND GENE EXPRESSION 259

12 Genetics 261

Mendel's Experiments on Inheritance 263
Making sense of Mendel's experiments requires a basic understanding of genes and chromosomes 263
Monohybrid crosses involve individuals that have different alleles for a specific gene 264
Segregation of alleles occurs during anaphase I of meiosis 266
A testcross demonstrates the genotype of an individual with a dominant phenotype 266

Dihybrid crosses involve individuals that have different alleles for two specific genes 266

Beyond Mendel's Work 268
Mendel's laws also apply to crosses that involve more than two traits 269
Some characters are not controlled by one dominant and one recessive allele 269
The locations of genes affect inheritance patterns 272
Genes interact with each other and with the environment 273
Mendel's gene for height in peas controls the production of a growth-promoting hormone 274
Summary 275
Review Questions 276
Questions for Thought and Discussion 276
Evolution Connection 276
To Learn More 276

Plants & People: A Brief Biography of Gregor Mendel 263
Plants & People: Genetics Before Mendel 268
The Intriguing World of Plants: A Weed with Great Potential 270

13 Gene Expression and Activation 277

Gene Expression 279
During replication, DNA is copied 279
DNA codes for the structure of proteins 280
During transcription, RNA is made from DNA 283
During translation, a protein is made from messenger RNA 284
Mutations can cause changes in gene expression 285

Differential Gene Expression 288
Gene expression is controlled at various levels 288
Regulatory proteins control transcription 289
Hormones and light can trigger the activation of transcription factors 289

Identifying Genes That Affect Development 292
Experiments on Arabidopsis illustrate the use of mutations to understand plant development 292
Transposons can be used to locate genes that affect development. Homeotic genes control development in plants and animals.

Summary

Review Questions

Questions for Thought and Discussion

Evolution Connection

To Learn More

The Intriguing World of Plants: The Closing of Stomata in Response to Drought Is a Typical STP

Biotechnology: DNA Microarrays

14 Plant Biotechnology

The Methods of Plant Biotechnology

Genes can be transferred between species through genetic engineering.
Plasmids often serve as vectors for gene transfer in plants.
Restriction enzymes and DNA ligase are used to make recombinant DNA.
Cloning produces multiple copies of recombinant DNA.
The polymerase chain reaction clones DNA without using cells.
Several methods can be used to insert cloned genes into plant cells.
In tissue culture, whole plants are grown from isolated cells or tissues.

The Accomplishments and Opportunities of Plant Biotechnology

Genetic engineering has made plants that are more resistant to pests and harsh soil conditions as well as more productive.
Transgenic plants contribute to human health and nutrition.
Genetically engineered crops require extensive field and market testing before they are released.
Genetically engineered crops must be safe for the environment and for consumers.
The future holds many opportunities for plant biotechnology.

Genomics and proteomics will provide information needed for future efforts in genetic engineering.

Summary

Review Questions

Questions for Thought and Discussion

Evolution Connection

To Learn More

Biotechnology: Genetic Engineering of Salt-Tolerant Plants

The Intriguing World of Plants: Wide Crosses Between Plants

Biotechnology: DNA Sequencing

Biotechnology: Analyzing DNA Fragments and Solving Crimes

Unit Four

EVOLUTION AND DIVERSITY

15 Evolution

History of Evolution on Earth

Fossils and molecular dating provide evidence of evolution.
Biogeography, anatomy, embryology, and physiology supply further evidence of evolution.
Chemosynthesis may have been the first event in the origin of life on Earth.
Prokaryotes were the predominant form of life for more than a billion years.
Plate tectonics and celestial cycles have shaped evolution on Earth.
Extinction is a fact of life on Earth.

Mechanisms of Evolution

Evolution is a change in the frequency of alleles in a population over time.
Most organisms have the potential to overproduce offspring.
Individuals in a population have many phenotypic differences.
Contents

Some traits confer an adaptive advantage 335
Natural selection favors individuals with the best-adapted phenotypes 336
Evolution can occur rapidly 338
In coevolution, two species evolve in response to each other 339

The Origin of Species 340
A biological species is a population of potentially interbreeding organisms 340
Both natural selection and geographical isolation drive speciation 342
Reproductive isolation can be prezygotic or postzygotic 342
Reproductive isolation in sympatric populations can occur because of polyploidy 343

Summary 344
Review Questions 345
Questions for Thought and Discussion 345
Evolution Connection 346
To Learn More 346

Plants & People: Germinating an Idea: Evolution by Means of Natural Selection 326
The Intriguing World of Plants: Artificial Selection 336
Evolution: Plants of the Galápagos Islands 339

16 Classification 347
Classification Before Darwin 349
Classification of organisms dates back to ancient times 349
Linnaeus laid the foundation for modern naming of species 350
Classification and Evolution 351
Systematists use a variety of characters to classify organisms 353
Molecular data play a key role in phylogenetic classification 354
Organisms are classified into a hierarchy 354
Systematists form hypotheses about evolutionary relationships 356
Cladograms are branching diagrams that show evolutionary relationships 358
Systematists often disagree about how to classify organisms 359

17 Viruses and Prokaryotes 370
Viruses and the Botanical World 372
Viruses are complexes of nucleic acid and protein that reproduce inside cells 372
Viruses cause many important plant diseases 374
Several approaches are used to prevent viral diseases in plants 375
Viroids are infectious RNA molecules 376
Prokaryotes and the Botanical World 376
Prokaryotes are unicellular organisms with diverse characteristics 376
Some bacteria are photosynthetic, and some fix nitrogen 377
Bacteria cause a variety of diseases in plants 379

Major Groups of Organisms 360
Systematists have revised the number of kingdoms 360
Molecular data have led to identifying "super kingdoms" called domains 361
The domain Archaea and the domain Bacteria are two very different groups of prokaryotes 361
The domain Eukarya includes protists, animals, fungi, and plants 362

The Future of Classification 363
New species remain to be discovered 363
Systematists are studying speciation in action 364
Molecular data will continue to provide insights into evolution 366
The classification of organisms has practical benefits 366

Summary 366
Review Questions 368
Questions for Thought and Discussion 368
Evolution Connection 369
To Learn More 369

Plants & People: Linnaeus and the Lure of Plants 352
The Intriguing World of Plants: What's in a Plant Name? 351
18 Algae 384

Characteristics and Evolution of Algae 386
Algae are distinguished by their photosynthetic pigments and other characteristics 386
Endosymbiosis played a key role in the evolution of algae 387

Unicellular and Colonial Algae 388
Euglenoids (phylum Euglenophyta) have a pellicle beneath the plasma membrane 388
Many dinoflagellates (phylum Dinophyta) have hard cellulose plates 389
Diatoms (phylum Bacillariophyta) form cell walls of silica 391
Yellow-green algae (phylum Xanthophyta) are important members of freshwater phytoplankton 392
Golden-brown algae (phylum Chrysophyta) form unique, dormant spores 392
Cryptomonads (phylum Cryptophyta) use ejectisomes for sudden escape 393
Haptophytes (phylum Prymnesiophyta) have a distinctive, moveable haptonema 393

Multicellular Algae 394
In many brown algae (phylum Phaeophyta), alternate generations are heteromorphic 394
Red algae (phylum Rhodophyta) have complex life cycles with three multicellular phases 395
Green algae (phylum Chlorophyta) share a common ancestor with plants 397

Summary 401
Review Questions 402
Questions for Thought and Discussion 402
Evolution Connection 403
To Learn More 403

The Intriguing World of Plants: Watermelon Snow 397
Biotechnology: Algae as a Source of Fuel 399

19 Fungi 404

Characteristics and Evolutionary History of Fungi 406
A combination of morphological and developmental characteristics distinguish fungi from other organisms 406
Fungi probably evolved from flagellated protists 407

The Diversity of Fungi 408
Chytridiomycetes (phylum Chytridiomycota) produce flagellated reproductive cells 408
Zygomycetes (phylum Zygomycota) form resistant zygosporangia prior to meiosis 408
Ascomycetes (phylum Ascomycota) produce sexual spores in sacs called ascii 411
Basidiomycetes (phylum Basidiomycota) produce sexual spores on club-shaped cells called basidia 415

Fungal Associations with Other Organisms 419
Lichens are associations of fungi and photosynthetic algae or bacteria 420
Some fungi form mutualistic associations with insects 421

Summary 422
Review Questions 423
Questions for Thought and Discussion 423
Evolution Connection 423
To Learn More 423

The Intriguing World of Plants: Fungi That Live on Dung 410
Conservation Biology: Dutch Elm Disease 414
Plants & People: Growing Mushrooms 417
20 Bryophytes 424

An Overview of Bryophytes 426
Bryophytes were among the first land plants 426
Bryophytes have many similarities to 427
green algae in the class Charophyceae and to vascular plants 427
In bryophytes, alternation of generations involves a dominant gametophyte and attached sporophyte 428
Bryophytes play important ecological roles 429
Many bryophyte species tolerate drought conditions 430
Liverworts: Phylum Hepatophyta 430
Liverwort gametophytes can be either thalloid or leafy 430
A liverwort life cycle demonstrates dominance of the gametophyte 431
Hornworts: Phylum Anthocerophyta 433
The hornwort life cycle features a hornlike sporophyte 433
The evolutionary history of hornworts, as with other bryophytes, is being debated 433
Mosses: Phylum Bryophyta 434
There are three main classes of mosses 435
The life cycle of Polytrichum demonstrates characteristic features of mosses 436
Summary 438
Review Questions 439
Questions for Thought and Discussion 439
Evolution Connection 439
To Learn More 439

The Intriguing World of Plants: Alternative Life Cycles 448
Evolution: Telomes and Origins of Sporangia 456

21 Seedless Vascular Plants 440

The Evolution of Seedless Vascular Plants 442
Seedless vascular plants dominated the landscape around 350 million years ago 442
Land plants arose from green algae in the class Charophyceae 443
Three phyla of extinct vascular plants appear in the fossil record beginning 430 million years ago 444
In living seedless vascular plants, alternation of generations involves independent gametophytes and sporophytes 446
Types of Living Seedless Vascular Plants 448
Whisk ferns comprise most of the living members of phylum Psilotophyta 448
Living members of phylum Lycophyta include club mosses, spike mosses, and quillworts 449
Horsetails are the living members of phylum Sphenophyta 453
Phylum Pterophyta consists of ferns, the largest group of seedless vascular plants 454
Summary 459
Review Questions 460
Questions for Thought and Discussion 460
Evolution Connection 460
To Learn More 460

The Intriguing World of Plants: Unusual Mosses 436

22 Gymnosperms 461

An Overview of Gymnosperms 463
Seed plants have significant selective advantages 463
Living gymnosperms are related to extinct plants from the Paleozoic and Mesozoic eras 465
In gymnosperms and other seed plants, dependent gametophytes develop within the parent sporophyte 466
The pine life cycle illustrates basic features of gymnosperm reproduction 466
Types of Living Gymnosperms 469
Phylum Coniferophyta contains conifers, which are the dominant forest trees in cooler climates 470
Phylum Cycadophyta contains cycads, which resemble tree ferns or palms 474
Phylum Ginkgophyta contains one living species 475
Phylum Gnetophyta contains three diverse genera found in tropical forests or in deserts 476
Summary

Review Questions

Questions for Thought and Discussion

Evolution Connection

To Learn More

Biotechnology: Improving and Protecting Trees

The Intriguing World of Plants: The Wollemi Pine: A Living Fossil

23 Angiosperms: Flowering Plants

Sexual Reproduction in Flowering Plants

Angiosperms, like gymnosperms, have a dominant sporophyte and dependent gametophyte

Self-pollination and cross-pollination are both common in angiosperms

The Evolution of Flowers and Fruits

The selective advantages of flowering plants account for their success

Flowers have evolved as collections of highly modified leaves

The evolution of angiosperms began during the Mesozoic era

During the Cretaceous period, angiosperms spread rapidly throughout the world

A Sampling of Angiosperm Diversity

Phylum Anthophyta contains more than 450 families, classified mainly by flower structure

Several families illustrate the diversity of floral and fruit structure

Summary

Review Questions

Questions for Thought and Discussion

Evolution Connection

To Learn More

Biotechnology: Superweeds

Evolution: The Origins of Domesticated Corn, Wheat, and Rice

The Intriguing World of Plants: A Recently Discovered Orchid

Unit Five

ECOLOGY

24 Ecology and the Biosphere

Abiotic Factors in Ecology

Abiotic factors are physical variables in an organism's environment

The tilt of Earth's axis causes seasons and affects temperatures

The atmosphere circulates in six global cells

The rotation and topography of Earth affect global patterns of wind and precipitation

Ecosystems

The biosphere can be divided into biogeographic realms and biomes

Terrestrial biomes are characterized by rainfall, temperature, and vegetation

Light penetration, temperature, and nutrients are important abiotic factors in aquatic biomes

Summary

Review Questions

Questions for Thought and Discussion

Evolution Connection

To Learn More

The Intriguing World of Plants: Weeds

Conservation Biology: El Niño and La Niña

25 Ecosystem Dynamics: How Ecosystems Work

Populations

The reproductive characteristics of plants create challenges in studies of plant populations

The distribution of plants in a population may be random, uniform, or clumped
Age distributions and survivorship curves describe the age structure of populations. The growth of populations over time is limited by environmental resources. The growth of plant populations depends on reproductive patterns.

Interactions Between Organisms in Ecosystems
Commensalism and mutualism are interactions in which at least one species benefits. Predation, herbivory, and parasitism are interactions in which at least one species is harmed. Plants compete for resources with members of their own and other species.

Communities and Ecosystems
Communities can be characterized by species composition and by vertical and horizontal species distribution. Apparently uniform environments are often composed of different microenvironments. A moderate level of disturbance can increase the number of species in an ecosystem. Ecological succession describes variation in communities over time. The energy stored in photosynthetic organisms passes inefficiently to other organisms in the same ecosystem. Biological magnification increases the concentration of some toxic substances at higher trophic levels. Water and nutrients cycle between biotic and abiotic components of ecosystems. Human activity has fragmented stable ecosystems into distinctive patches.

Summary
Review Questions
Questions for Thought and Discussion
Evolution Connection
To Learn More

26 Conservation Biology 548

Human Population Growth
Human population is increasing exponentially. Increased food production will involve genetically altered plants, improved growing practices, and more efficient food distribution systems.

Human Impacts on Ecosystems
The presence and activities of large human populations disturb ecosystems. The geographic information system provides a new tool to record changes in ecosystems.

The Future
The future of human interactions with ecosystems can be modeled on worst-case or best-case scenarios. Achieving a best-case scenario for the biosphere would involve a marked reversal of current trends. A number of problems would have to be overcome to reverse current trends of ecosystem destruction and modification. It is important to establish models of success in promoting ecosystem restoration.

Summary
Review Questions
Questions for Thought and Discussion
Evolution Connection
To Learn More

Conservation Biology: Land Races and Seed Banks
The Intriguing World of Plants: Kudzu
Biotechnology: Recreating Lost Worlds Through Genomics and Proteomics

Appendix A Basic Chemistry
Appendix B Metric Conversions
Appendix C Classification of Life
Credits
Glossary
Index