CONTENTS

Preface

1 **REVIEW OF SINGLE-PHASE FLOW**

1.1 **Basic Fluid Flow Concepts**

1.2 **Flow Field Descriptions**
 - 1.2.1 Lagrangian Description
 - 1.2.2 Eulerian Description
 - 1.2.3 Derivation Approaches

1.3 **Conservation Laws**
 - 1.3.1 Mass Conservation
 - 1.3.2 Momentum Conservation
 - 1.3.3 Energy Conservation

1.4 **Turbulence**
 - 1.4.1 Aspects of Turbulence in Single-Phase Flow
 - 1.4.2 Turbulence Scales
 - 1.4.3 Summary of Turbulence Modeling

1.5 **Solution Techniques**
 - 1.5.1 Solution Methods for Differential Equations
 - 1.5.2 Solution Procedures for the Navier-Stokes Equations
 - 1.5.3 Similarity Theory
 - 1.5.4 Integral Methods
 - 1.5.5 Dimensional Analysis and Scaling

1.6 **Homework Problem Assignments**

References
2 BASIC CONCEPTS OF TWO-PHASE FLOW THEORY

2.1 FLOW REGIME CLASSIFICATIONS AND MODELING APPROACHES
2.1.1 Two-Phase Flow Classifications and Examples 70
2.1.2 Modeling Approaches 77

2.2 DISPERSED FLOW DEFINITIONS, PHASE PROPERTIES, AND PHASE COUPLING
2.2.1 Definitions 79
2.2.2 Phase Properties 93
2.2.3 Phase Coupling 99

2.3 MASS, MOMENTUM, AND HEAT TRANSFER
2.3.1 Mass Transfer 102
2.3.2 Momentum Transfer 106
2.3.3 Heat Transfer 108

2.4 STATISTICAL DESCRIPTIONS
2.4.1 Turbulence Modulation 114
2.4.2 Kinetic Theory 116

2.5 ILLUSTRATIONS OF SOME PRACTICAL DISPERSED FLOWS
2.5.1 Gas-Solid Flows 119
2.5.2 Liquid-Solid Flows 122
2.5.3 Liquid-Gas Flows 123

2.6 HOMEWORK PROBLEM ASSIGNMENTS

References 128

3 DERIVATIONS OF TWO-PHASE FLOW MODELING EQUATIONS

3.1 AVERAGING TECHNIQUES AND CONSTITUTIVE EQUATIONS 134

3.2 MIXTURE MODELS
3.2.1 Homogeneous Flow Models 139
3.2.1.1 Mixture Properties and Solution Techniques 139
3.2.1.2 Non-Newtonian Fluid Flow Equations 144
3.2.1.3 Homework Problems 149
3.2.2 Drift-Flux Models 150
3.2.2.1 One-Dimensional Drift-Flux Equations 151
3.2.2.2 Extended Transport Equations 161
3.3 SEPARATED FLOW MODELS

3.3.1 Particle Trajectory Models
3.3.1.1 Single Spherical Particles
3.3.1.2 Particle Interactions
3.3.1.3 Particle Group Interactions

3.3.2 Two-Fluid Model
3.3.2.1 Two-Fluid Model Formulation
3.3.2.2 Averaged Equations
3.3.2.3 Alternative Derivation of the Two-Fluid Modeling Equations
3.3.2.4 Separated Flow Model Applications
3.3.2.5 Closure Conditions
3.3.2.6 Pressure Drop Evaluation

3.4 PROBLEM ASSIGNMENTS

References

4 ANALYSES AND NUMERICAL SIMULATIONS OF BASIC TWO-PHASE FLOWS

4.1 NUMERICAL SOLUTION TOOLS
4.1.1 Symbolic/Numerical Math Software
4.1.2 Computational Fluid Dynamics Codes
4.1.3 Particle Tracking Code

4.2 MIXTURE FLOW APPLICATIONS
4.2.1 Two-Phase Flow Regimes in a Channel
4.2.2 Newtonian vs. Non-Newtonian Fluid Flows
4.2.3 Mixture Flows with Drift Flux

4.3 PARTICLE TRAJECTORY DYNAMICS
4.3.1 Analytic Solution
4.3.2 Particle Behavior for Sinusoidal Input
4.3.3 Particle Behavior for Start-up Motion
4.3.4 Spray Dynamics

4.4 TWO-FLUID MODEL APPLICATIONS
4.4.1 Bubbly Flow
4.4.2 Fluid-Solid Flow in a Vertical Pipe

4.5 PROJECT ASSIGNMENTS

References
5 SELECTED CASE STUDIES

5.1 MATHEMATICAL MODELING, COMPUTER SIMULATION, AND VIRTUAL PROTOTYPING

5.1.1 Problem Recognition and System Conceptualization
5.1.2 Types of Models and Modeling Approaches
5.1.3 Mathematical Representation and System Simulation

5.2 QUASI-HOMOGENEOUS EQUILIBRIUM FLOWS (EULER)

5.2.1 Two-Dimensional Dispersed Flows
5.2.2 Transient 3-D Suspension Flows

5.3 SEPARATED FLOWS I: FLUID-PARTICLE MODELS (EULER-LAGRANGE)

5.3.1 Lung Aerosol Transport and Deposition
5.3.2 Near-Wall Particle Residence Times in Bifurcating Blood Vessels

5.4 SEPARATED FLOWS II: TWO-FLUID MODELS

5.4.1 Bubble Columns
5.4.2 Two-Phase Flow in a Mixing Tank Reactor with an Impeller

5.5 SUMMARY

References

APPENDICES

A. Algebraic and Differential Operations with Tensors
B. Single-Phase Field Equations
C. Two-Phase Flow Terms and Variables
D. Physical Properties of Gases, Liquids, and Solids

References

INDEX