Dynamics of Mechanical Systems with Coulomb Friction

Translated by Alexander K. Belyaev

With 59 Figures
Contents

Introduction

1 Development of the theory of motion for systems with Coulomb friction
 1.1 Coulomb's law of friction .. 11
 1.2 Main peculiarities of systems with Coulomb friction and the specific problems of the theory of motion .. 12
 1.2.1 The principle peculiarity 13
 1.2.2 Non-closed system of equations for the dynamics of systems with friction and the problem of deriving these equations .. 14
 1.2.3 Non-correctness of the equations for systems with friction and the problem of solving Painlevé's paradoxes 15
 1.2.4 The problem of determining the forces of friction acting on particles .. 17
 1.2.5 Retaining the state of rest and transition to motion 18
 1.2.6 The problem of determining the property of self-braking 19
 1.2.7 Appearance of self-excited oscillations 19
 1.3 Various interpretations of Painlevé's paradoxes 20
 1.4 Principles of the general theory of systems with Coulomb friction .. 25
 1.5 Laws of Coulomb friction and the theory of frictional self-excited oscillations .. 32
2 Systems with a single degree of freedom and a single frictional pair

2.1 Lagrange’s equations with a removed contact constraint 37
2.2 Kinematic expression for slip with rolling ... 44
 2.2.1 Velocity of slip and the velocities of change of the
 contact place due to the trace of the contact 44
 2.2.2 Angular velocity .. 45
2.3 Equation for the constraint force and Painlevé’s paradoxes 49
 2.3.1 Solution for the acceleration and the constraint force 50
 2.3.2 Criterion for the paradoxes ... 51
2.4 Immovable contact and transition to slipping .. 53
2.5 Self-braking and the angle of stagnation ... 57
 2.5.1 The case of no paradoxes ... 58
 2.5.2 The case of paradoxes ($\mu L > 1$) ... 64

3 Accounting for dry friction in mechanisms. Examples of
single-degree-of-freedom systems with a single frictional pair

3.1 Two simple examples ... 67
 3.1.1 First example .. 67
 3.1.2 Second example .. 69
3.2 The Painlevé-Klein extended scheme ... 70
 3.2.1 Differential equations of motion, expression for the
 reaction force, condition for the paradoxes and the
 law of motion ... 72
 3.2.2 Immovable contact and transition to slip ... 74
 3.2.3 The stagnation angle and the property of self-braking
 in the case of no paradoxes ... 75
 3.2.4 Self-braking under the condition of paradoxes 77
3.3 Stacker ... 79
 3.3.1 Pure rolling of the rigid body model ... 79
 3.3.2 Slip of the driving wheel for the rigid body model 82
 3.3.3 Speed-up of stacker .. 84
 3.3.4 Pure rolling in the case of tangential compliance 85
 3.3.5 Rolling with account of compliance ... 87
 3.3.6 Speed-up with account of compliance .. 88
 3.3.7 Numerical example ... 91
3.4 Epicyclic mechanism with cylindric teeth of the involute
 gearing ... 94
 3.4.1 Differential equation of motion, equations for the re-
 action force and the conditions for paradoxes 95
 3.4.2 Relationships between the torques at rest and in the
 transition to motion ... 100
 3.4.3 Regime of uniform motion .. 103
3.5 Gear transmission with immovable rotation axes 103
Contents

3.5.1 Differential equations of motion and the condition for absence of paradoxes ... 104
3.5.2 Regime of uniform motion .. 106
3.5.3 Transition from the state of rest to motion 109
3.6 Crank mechanism ... 110
3.6.1 Equation of motion and reaction force 110
3.6.2 Condition for complete absence of paradoxes 112
3.6.3 The property of self-braking in the case of no paradoxes 114
3.7 Link mechanism of a planing machine 115
3.7.1 Differential equations of motion and the expression for the reaction force ... 115
3.7.2 Feasibility of Painlevé's paradoxes 119
3.7.3 The property of self-braking .. 121
3.7.4 Numerical example .. 123

4 Systems with many degrees of freedom and a single frictional pair. Solving Painlevé's paradoxes 125
4.1 Lagrange's equations with a removed constraint 125
4.2 Equation for the constraint force, differential equation of motion and the criterion of paradoxes 128
4.2.1 Determination of the constraint force and acceleration 128
4.2.2 Criterion of Painlevé's paradoxes .. 131
4.3 Determination of the true motion .. 132
4.3.1 Limiting process ... 133
4.3.2 True motions under the paradoxes 137
4.4 True motions in the Painlevé-Klein problem in paradoxical situations .. 141
4.4.1 Equations for the reaction force .. 142
4.4.2 True motions for the paradoxes .. 143
4.5 Elliptic pendulum ... 145
4.6 The Zhukovsky-Froude pendulum ... 148
4.6.1 Equation for the reaction force and condition for the non-existence of the solution 150
4.6.2 The equilibrium position and free oscillations 152
4.6.3 Regime of joint rotation of the journal and the pin 153
4.7 A condition of instability for the stationary regime of metal cutting ... 155
4.7.1 Derivation of the equations of motion 155
4.7.2 Solving the equations .. 157
4.7.3 Relationship between instability of cutting and Painlevé's paradox ... 159
4.7.4 Boring with an axial feed .. 161
5 Systems with several frictional pairs. Painlevé’s law of friction. Equations for the perturbed motion taking account of contact compliance 163

5.1 Equations for systems with Coulomb friction 163
5.1.1 System with removed constraints 163
5.1.2 Solving the main system 166
5.1.3 The case of \(n = 1, m = 1 \) 169

5.2 Mathematical description of the Painlevé law of friction 170
5.2.1 Accelerations due to two systems of external forces 170
5.2.2 Improved Painlevé’s equations 172
5.2.3 Improved Painlevé’s theorem 174

5.3 Forces of friction in the Painlevé-Klein problem 176

5.4 The contact compliance and equations of perturbed trajectories ... 177
5.4.1 Lagrange’s equations for systems with elastic contact joints ... 177
5.4.2 Equations for perturbed reaction forces 179

5.5 Painlevé’s scheme with two frictional pairs 181
5.5.1 Lagrange’s equations, reaction forces and the equations of motion with eliminated reaction forces ... 182
5.5.2 Feasibility of Painlevé’s paradoxes 184
5.5.3 Expressions for the frictional force in terms of the friction coefficients 185
5.5.4 Painlevé’s scheme for compliant contacts 186

5.6 Sliders of metal-cutting machine tools 187
5.6.1 Derivation of equations of motion and expressions for the reaction forces 187
5.6.2 Signs of the reaction forces and feasibility of paradoxes 189
5.6.3 Forces of friction ... 191

5.7 Concluding remarks about Painlevé’s paradoxes 192
5.7.1 On equations of systems with Coulomb friction 192
5.7.2 On conditions of the paradoxes 193
5.7.3 On the reasons for the paradoxes 193
5.7.4 On the laws of motion in the paradoxical situations ... 193
5.7.5 On the initial motion of an immovable contact 194
5.7.6 On self-braking .. 194
5.7.7 On the mathematical description of Painlevé’s law 195
5.7.8 On examples ... 195

6 Experimental investigations into the force of friction under self-excited oscillations 197

6.1 Experimental setups .. 198
6.1.1 The first setup .. 198
6.1.2 The second setup .. 200
6.1.3 The third setup .. 201
6.2 Determining the forces by means of an oscillogram 202
6.3 Change in the force of friction under break-down of the max-
imum friction in the case of a change in the velocity of motion206
6.4 Dependence of the friction force on the rate of tangential
loading .. 209
6.5 Plausibility of the dependence $F_+(f)$ 213
6.5.1 Control tests 213
6.5.2 Estimating the numerical characteristics 213
6.5.3 Statistical properties of the dependences 214
6.5.4 Test data of other authors 215
6.6 Characteristic of the force of sliding friction 215

7 Force and small displacement in the contact 217
7.1 Components of the small displacement 217
7.1.1 Definition of break-down and initial break-down 217
7.1.2 Reversible and irreversible components 218
7.1.3 Influence of the intermediate stop and reverse on the
irreversible displacement 220
7.1.4 Dependence of the total small displacement on the
rate of tangential loading 222
7.1.5 Small displacement of parts of the contact 223
7.1.6 Comparing the values of small displacement with ex-
isting data .. 225
7.2 Remarks on friction between steel and polyamide 226
7.2.1 On critical values of the force of friction 226
7.2.2 Time lag of small displacement 226
7.2.3 Immovable and viscous components of the force of
friction ... 229
7.3 Conclusions ... 230

8 Frictional self-excited oscillations 231
8.1 Self-excited oscillations due to hard excitation 231
8.1.1 The case of no structural damping 231
8.1.2 Including damping 237
8.2 Self-excited oscillations under both hard and soft excitations 240
8.2.1 Equations of motion 240
8.2.2 Critical velocities 242
8.2.3 Amplitude of auto-oscillation 244
8.2.4 Period of auto-oscillation 246
8.2.5 Self-excitation of systems 247
8.3 Accuracy of the displacement 249

References .. 255

Index .. 268