QUANTUM THEORY OF TUNNELING

Mohsen Razavy
University of Alberta, Canada
Contents

Preface v

1 A Brief History of Quantum Tunneling 1

2 Some Basic Questions Concerning Quantum Tunneling 9
 2.1 Tunneling and the Uncertainty Principle 9
 2.2 Decay of a Quasistationary State 11

3 Semi-Classical Approximations 23
 3.1 The WKB Approximation 23
 3.2 Method of Miller and Good 31
 3.3 Calculation of the Splitting of Levels in a Symmetric Double-Well Potential Using WKB Approximation 35

4 Generalization of the Bohr-Sommerfeld Quantization Rule and its Application to Quantum Tunneling 41
 4.1 The Bohr-Sommerfeld Method for Tunneling in Symmetric and Asymmetric Wells 45
 4.2 Numerical Examples 48
5 Gamow's Theory, Complex Eigenvalues, and the Wave Function of a Decaying State 53

5.1 Solution of the Schrödinger Equation with Radiating Boundary Condition 53

5.2 The Time Development of a Wave Packet Trapped Behind a Barrier 57

5.3 A More Accurate Determination of the Wave Function of a Decaying State 61

5.4 Some Instances Where WKB Approximation and the Gamow Formula Do Not Work 66

6 Simple Solvable Problems 73

6.1 Confining Double-Well Potentials 73

6.2 Time-dependent Tunneling for a δ-Function Barrier 79

6.3 Tunneling Through Barriers of Finite Extent 82

6.4 Tunneling Through a Series of Identical Rectangular Barriers 90

6.5 Eckart's Potential 96

6.6 Double-Well Morse Potential 99

7 Tunneling in Confining Symmetric and Asymmetric Double-Wells 105

7.1 Tunneling When the Barrier is Nonlocal 112

7.2 Tunneling in Separable Potentials 116

7.3 A Solvable Asymmetric Double-Well Potential 119

7.4 Quasi-Solvable Examples of Symmetric and Asymmetric Double-Wells 121
Quantum Tunneling

7.5 Gel'fand-Levitan Method ... 124
7.6 Darboux's Method ... 127
7.7 Optical Potential Barrier Separating Two Symmetric or
 Asymmetric Wells ... 128

8 A Classical Description of Tunneling 139

9 Tunneling in Time-Dependent Barriers 149
 9.1 Multi-Channel Schrödinger Equation for Periodic Potentials . 150
 9.2 Tunneling Through an Oscillating Potential
 Barrier .. 152
 9.3 Separable Tunneling Problems with Time-
 Dependent Barriers .. 157
 9.4 Penetration of a Particle Inside a Time-
 Dependent Potential Barrier 162

10 Decay Width and the Scattering Theory 167
 10.1 Scattering Theory and the Time-Dependent Schrödinger
 Equation ... 168
 10.2 An Approximate Method of Calculating the Decay Widths . 173
 10.3 Time-Dependent Perturbation Theory Applied to the
 Calculation of Decay Widths of Unstable States 176
 10.4 Early Stages of Decay via Tunneling 181
 10.5 An Alternative Way of Calculating the Decay Width Using
 the Second Order Perturbation Theory 184
 10.6 Tunneling Through Two Barriers 186
10.7 Escape from a Potential Well by Tunneling Through both Sides 191

10.8 Decay of the Initial State and the Jost Function 196

11 The Method of Variable Reflection Amplitude Applied to Solve Multichannel Tunneling Problems 205

11.1 Mathematical Formulation .. 206

11.2 Matrix Equations and Semi-classical Approximation for Many-Channel Problems 212

12 Path Integral and Its Semi-Classical Approximation in Quantum Tunneling 219

12.1 Application to the S-Wave Tunneling of a Particle Through a Central Barrier 222

12.2 Method of Euclidean Path Integral .. 226

12.3 An Example of Application of the Path Integral Method in Tunneling 231

12.4 Complex Time, Path Integrals and Quantum Tunneling 237

12.5 Path Integral and the Hamilton-Jacobi Coordinates 241

12.6 Remarks About the Semi-Classical Propagator and Tunneling Problem 243

13 Heisenberg’s Equations of Motion for Tunneling 251

13.1 The Heisenberg Equations of Motion for Tunneling in Symmetric and Asymmetric Double-Wells 252

13.2 Tunneling in a Symmetric Double-Well 258

13.3 Tunneling in an Asymmetric Double-Well 259
Quantum Tunneling

13.4 Tunneling in a Potential Which Is the Sum of Inverse Powers of the Radial Distance .. 261

13.5 Klein's Method for the Calculation of the Eigenvalues of a Confining Double-Well Potential 267

14 Wigner Distribution Function in Quantum Tunneling 277

14.1 Wigner Distribution Function and Quantum Tunneling 281

14.2 Wigner Trajectory for Tunneling in Phase Space 284

14.3 Wigner Distribution Function for an Asymmetric Double-Well ... 290

14.4 Wigner Trajectory for an Oscillating Wave Packet 290

14.5 Margenau-Hill Distribution Function for a Double-Well Potential ... 292

15 Complex Scaling and Dilatation Transformation Applied to the Calculation of the Decay Width 297

16 Multidimensional Quantum Tunneling 307

16.1 The Semi-classical Approach of Kapur and Peierls 307

16.2 Wave Function for the Lowest Energy State 311

16.3 Calculation of the Low-Lying Wave Functions by Quadrature 313

16.4 Method of Quasilinearization Applied to the Problem of Multidimensional Tunneling 318

16.5 Solution of the General Two-Dimensional Problems 323

16.6 The Most Probable Escape Path 327

17 Group and Signal Velocities 339
Contents

18 Time-Delay, Reflection Time Operator and Minimum Tunneling Time

18.1 Time-Delay in Tunneling .. 352
18.2 Time-Delay for Tunneling of a Wave Packet 356
18.3 Landauer and Martin Criticism of the Definition of the Time-Delay in Quantum Tunneling 365
18.4 Time-Delay in Multi-Channel Tunneling 368
18.5 Reflection Time in Quantum Tunneling 371
18.6 Minimum Tunneling Time ... 375

19 More about Tunneling Time

19.1 Dwell and Phase Tunneling Times 382
19.2 Büttiker and Landauer Time 385
19.3 Larmor Precession .. 388
19.4 Tunneling Time and its Determination Using the Internal Energy of a Simple Molecule 392
19.5 Intrinsic Time .. 394
19.6 A Critical Study of the Tunneling Time Determination by a Quantum Clock 398
19.7 Tunneling Time According to Low and Mende 402

20 Tunneling of a System with Internal Degrees of Freedom

20.1 Lifetime of Coupled-Channel Resonances 411
20.2 Two-Coupled Channel Problem with Spherically Symmetric Barriers .. 413
20.3 A Numerical Example .. 415
20.4 Tunneling of a Simple Molecule 418
20.5 Tunneling of a Molecule in Asymmetric Double-Wells 424
20.6 Tunneling of a Molecule Through a Potential Barrier 429
20.7 Antibound State of a Molecule 434

21 Motion of a Particle in a Space Bounded by a
Surface of Revolution .. 439
21.1 Testing the Accuracy of the Present Method 444
21.2 Calculation of the Eigenvalues 445

22 Relativistic Formulation of Quantum Tunneling 453
22.1 One-Dimensional Tunneling of the Electrons 453
22.2 Tunneling of Spinless Particles in One Dimension 458
22.3 Tunneling Time in Special Relativity 461

23 The Inverse Problem of Quantum Tunneling 471
23.1 A Method for Finding the Potential from the Reflection
Amplitude ... 472
23.2 Determination of the Shape of the Potential Barrier in
One-Dimensional Tunneling 473
23.3 Prony’s Method of Determination of Complex Energy
Eigenvalues .. 476
23.4 A Numerical Example 478
23.5 The Inverse Problem of Tunneling for Gamow States 479
24 Some Examples of Quantum Tunneling in Atomic and Molecular Physics

24.1 Torsional Vibration of a Molecule

24.2 Electron Emission from the Surface of Cold Metals

24.3 Ionization of Atoms in Very Strong Electric Field

24.4 A Time-Dependent Formulation of Ionization in an Electric Field

24.5 Ammonia Maser

24.6 Optical Isomers

24.7 Three-Dimensional Tunneling in the Presence of a Constant Field of Force

25 Examples from Condensed Matter Physics

25.1 The Band Theory of Solids and the Kronig-Penney Model

25.2 Tunneling in Metal-Insulator-Metal Structures

25.3 Many Electron Formulation of the Current

25.4 Electron Tunneling Through Hetero-structures

26 Alpha Decay

Index