Bridge Launching

Marco Rosignoli

Parma, Italy
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ix</td>
</tr>
<tr>
<td>List of symbols</td>
<td>xi</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Introduction to incremental launching</td>
<td>10</td>
</tr>
<tr>
<td>1.2. Incremental launching of PC bridges</td>
<td>13</td>
</tr>
<tr>
<td>1.3. Incremental launching of composite bridges</td>
<td>15</td>
</tr>
<tr>
<td>1.4. Incremental launching of prestressed composite bridges</td>
<td>16</td>
</tr>
<tr>
<td>2. Incremental launching of bridges</td>
<td>19</td>
</tr>
<tr>
<td>2.1. Structural system of the superstructure</td>
<td>19</td>
</tr>
<tr>
<td>2.2. Static system and seismic design</td>
<td>27</td>
</tr>
<tr>
<td>2.3. Geometric constraints</td>
<td>29</td>
</tr>
<tr>
<td>2.4. Launching techniques</td>
<td>32</td>
</tr>
<tr>
<td>2.4.1. Launching of light superstructures</td>
<td>33</td>
</tr>
<tr>
<td>2.4.2. Friction launching of heavy superstructures</td>
<td>43</td>
</tr>
<tr>
<td>2.5. Launch bearings and guide devices</td>
<td>53</td>
</tr>
<tr>
<td>2.6. Launch and lock forces</td>
<td>55</td>
</tr>
<tr>
<td>2.7. Correction of launch stresses</td>
<td>58</td>
</tr>
<tr>
<td>2.7.1. Launching nose</td>
<td>64</td>
</tr>
<tr>
<td>2.7.2. Stayed front system</td>
<td>88</td>
</tr>
<tr>
<td>2.7.3. Temporary piers</td>
<td>94</td>
</tr>
<tr>
<td>2.7.4. Deck launching onto arches</td>
<td>97</td>
</tr>
<tr>
<td>2.8. Launch stresses in the piers</td>
<td>103</td>
</tr>
<tr>
<td>2.9. RTM method for analysis of the continuous beam</td>
<td>110</td>
</tr>
<tr>
<td>2.10. Shear and bending moment envelopes</td>
<td>118</td>
</tr>
<tr>
<td>2.11. Verification of design assumptions by monitoring</td>
<td>120</td>
</tr>
<tr>
<td>2.11.1. Elastic modulus of concrete</td>
<td>121</td>
</tr>
<tr>
<td>2.11.2. Thermal correction of results</td>
<td>123</td>
</tr>
</tbody>
</table>
2.11.3. Coefficient of thermal expansion of concrete
2.11.4. Shrinkage

3. **PC bridges**
 3.1. Presizing of the superstructure
 3.2. Deck segmentation and yard organization
 3.3. Casting phases
 3.3.1. Monolithic casting
 3.3.2. Two-phase casting in a single formwork
 3.3.3. Two-phase casting in a double formwork
 3.3.4. Segment extraction
 3.3.5. Curing yard
 3.4. Assembly and launching of precast segments
 3.5. Launch bearings and guide devices
 3.5.1. Pier-cap arrangement
 3.5.2. Effects of vertical misalignment of launch bearings
 3.5.3. Local stresses above launching bearings
 3.6. Effects of time-dependent behaviour of concrete
 3.6.1. Shrinkage
 3.6.2. Creep
 3.6.3. Prestressing steel relaxation
 3.6.4. Effects on bridge launching
 3.7. Prestressing
 3.7.1. Launch prestressing
 3.7.2. Dimensioning of launch prestressing
 3.7.3. Service prestressing
 3.8. Reinforcement

4. **Composite bridges**
 4.1. Conceptual design and deck presizing
 4.1.1. Multigirder systems
 4.1.2. Two-girder systems
 4.1.3. Composite box girders
 4.2. Segmentation of the steel girder
 4.3. Assembly yard organization
 4.4. Launching of the steel girder
 4.4.1. Launching bearings
 4.4.2. Launching nose
 4.4.3. General launch stresses and instability
 4.4.4. Local launch stresses and instability
 4.5. In situ casting of the concrete slab
 4.5.1. Casting methods and cracking control
 4.5.2. Longitudinal prestressing of the concrete slab
 4.5.3. Transverse prestressing of the concrete slab
4.6. Incremental launching of the concrete slab onto the steel beam 257
 4.6.1. Technological features 258
 4.6.2. Advantages with respect to in situ casting 265
 4.6.3. Stress analysis 267

5. Prestressed composite bridges 271
 5.1. Introduction 271
 5.1.1. High performance concrete 272
 5.1.2. Lightweight concrete 275
 5.1.3. Introduction to prestressed composite bridges 276
 5.1.4. Cross-sectional efficiency 279
 5.2. PCS bridges with stiffened-plate webs 281
 5.2.1. Web-slab lower node 283
 5.2.2. Web instability 284
 5.2.3. Launching 286
 5.3. PCS bridges with corrugated webs 288
 5.3.1. State of stress in the corrugated webs 291
 5.3.2. Cross-sectional deformability 294
 5.3.3. Connection between webs and slabs 296
 5.3.4. Web instability 299
 5.3.5. Fabrication of corrugated plate girders 305
 5.3.6. Field activities 307
 5.3.7. Launching 308
 5.3.8. Case studies 311

References and bibliography 319

Index 333