Table of Contents

Volume 1. Master Equations and Fokker–Planck Equations

1. Dissipation in Quantum Mechanics:
The Master Equation Approach .. 1
 1.1 Introduction .. 1
 1.2 Inadequacy of an Ad Hoc Approach 2
 1.3 System Plus Reservoir Approach 3
 1.3.1 The Schrödinger Equation in Integro-Differential Form 5
 1.3.2 Born and Markov Approximations 6
 1.3.3 The Markov Approximation and Reservoir Correlations 7
 1.4 The Damped Harmonic Oscillator 9
 1.4.1 Master Equation for the Damped Harmonic Oscillator 9
 1.4.2 Some Limitations ... 17
 1.4.3 Expectation Values and Commutation Relations 18
 1.5 Two-Time Averages and the Quantum Regression Formula 19
 1.5.1 Formal Results .. 22
 1.5.2 Quantum Regression for a Complete Set of Operators 25
 1.5.3 Correlation Functions for the Damped Harmonic Oscillator 27

2. Two-Level Atoms and Spontaneous Emission 29
 2.1 Two-Level Atom as a Pseudo-Spin System 29
 2.2 Spontaneous Emission in the Master Equation Approach 32
 2.2.1 Master Equation for a Radiatively Damped Two-Level Atom 32
 2.2.2 The Einstein A Coefficient 35
 2.2.3 Matrix Element Equations, Correlation Functions, and Spontaneous Emission Spectrum 36
 2.2.4 Phase Destroying Processes 39
2.3 Resonance Fluorescence ... 43
 2.3.1 The Scattered Field ... 45
 2.3.2 Master Equation for a Two-Level Atom
 Driven by a Classical Field 48
 2.3.3 Optical Bloch Equations and Dressed States 51
 2.3.4 The Fluorescence Spectrum 56
 2.3.5 Second-Order Coherence 60
 2.3.6 Photon Antibunching and Squeezing 65

3. Quantum–Classical Correspondence
for the Electromagnetic Field I:
The Glauber–Sudarshan P Representation 75
 3.1 The Glauber–Sudarshan P Representation 76
 3.1.1 Coherent States .. 77
 3.1.2 Diagonal Representation for the Density Operator
 Using Coherent States 81
 3.1.3 Examples: Coherent States, Thermal States,
 and Fock States .. 83
 3.1.4 Fokker–Planck Equation
 for the Damped Harmonic Oscillator 89
 3.1.5 Solution of the Fokker–Planck Equation 91
 3.2 The Characteristic Function for Normal-Ordered Averages . 94
 3.2.1 Operator Averages and the Characteristic Function 95
 3.2.2 Derivation of the Fokker–Planck Equation
 Using the Characteristic Function 96

4. Quantum–Classical Correspondence
for the Electromagnetic Field II:
P, Q, and Wigner Representations 101
 4.1 The Q and Wigner Representations 102
 4.1.1 Antinormal-Ordered Averages
 and the Q Representation 102
 4.1.2 The Damped Harmonic Oscillator
 in the Q Representation 105
 4.1.3 Antinormal-Ordered Averages
 Using the P Representation 108
 4.1.4 The Wigner Representation 110
 4.2 Fun with Fock States ... 114
 4.2.1 Wigner Distribution for a Fock State 114
 4.2.2 Damped Fock State in the P Representation 117
 4.2.3 Damped Fock State
 in the Q and Wigner Representations 120
 4.3 Two-Time Averages ... 123
4.3.1 Quantum-Classical Correspondence
for General Operators .. 124
4.3.2 Associated Functions and the Master Equation 129
4.3.3 Normal-Ordered Time-Ordered Averages
in the P Representation 131
4.3.4 More General Two-Time Averages
Using the P Representation 133
4.3.5 Two-Time Averages
Using the Q and Wigner Representations 137

5. Fokker–Planck Equations
and Stochastic Differential Equations 147
 5.1 One-Dimensional Fokker–Planck Equations 148
 5.1.1 Drift and Diffusion 149
 5.1.2 Steady-State Solution 153
 5.1.3 Linearization and the System Size Expansion ... 155
 5.1.4 Limitations of the Linearized Treatment
 of Fluctuations 160
 5.1.5 The Truncated Kramers–Moyal Expansion 164
 5.2 Linear Fokker–Planck Equations 165
 5.2.1 The Green Function 166
 5.2.2 Moments of Multi-Dimensional Gaussians 169
 5.2.3 Formal Solution for Time-Dependent Averages 171
 5.2.4 Equation of Motion for the Covariance Matrix ... 174
 5.2.5 Steady-State Spectrum of Fluctuations 176
 5.3 Stochastic Differential Equations 178
 5.3.1 A Comment on Notation 179
 5.3.2 The Wiener Process 180
 5.3.3 Stochastic Differential Equations 183
 5.3.4 Ito and Stratonovich Integrals 186
 5.3.5 Fokker–Planck Equations
 and Equivalent Stochastic Differential Equations ... 190
 5.3.6 Multi-Dimensional Ornstein–Uhlenbeck Process ... 192

6. Quantum–Classical Correspondence
for Two-Level Atoms .. 195
 6.1 Haken's Representation
 and the Damped Two-Level Atom 195
 6.1.1 The Characteristic Function
 and Associated Distribution 196
 6.1.2 Some Operator Algebra 197
 6.1.3 Phase-Space Equation of Motion
 for the Damped Two-Level Atom 199
Table of Contents

6.1.4 A Singular Solution to the Phase-Space Equation of Motion 205

6.2 Normal-Ordered Representation for a Collection of Two-Level Atoms 211
 6.2.1 Collective Atomic Operators .. 212
 6.2.2 Direct Product States, Dicke States, and Atomic Coherent States 216
 6.2.3 The Characteristic Function and Associated Distribution 222
 6.2.4 Nonsingular Approximation for the P Distribution 223
 6.2.5 Two-Time Averages ... 226
 6.2.6 Other Representations .. 232

6.3 Fokker–Planck Equation for a Radiatively Damped Two-Level Medium 233
 6.3.1 Master Equation for Independently Damped Two-Level Atoms 233
 6.3.2 Closed Dynamics for Normally-Ordered Averages of Collective Operators 236
 6.3.3 Operator Averages Without Quantum Fluctuations 241
 6.3.4 Phase-Space Equation of Motion for Independently Damped Two-Level Atoms 245
 6.3.5 Fokker–Planck Equation: First-Order Treatment of Quantum Fluctuations 248
 6.3.6 Steady-State Distribution of Inversion ... 252

 7.1 Laser Theory from Einstein Rate Equations ... 258
 7.1.1 Rate Equations and Laser Threshold .. 258
 7.1.2 Spontaneous Emission and Thermal Photons 263
 7.1.3 Quantum Fluctuations: A Stochastic Model 268
 7.1.4 Two-Level Model and Laser Parameters 276
 7.2 Phase-Space Formulation in the Normal-Ordered Representation 280
 7.2.1 Model and Hamiltonian .. 280
 7.2.2 Master Equation for the Single-Mode Homogeneously Broadened Laser 284
 7.2.3 The Characteristic Function and Associated Distribution 286
 7.2.4 Phase-Space Equation of Motion for the Single-Mode Homogeneously Broadened Laser 287
 7.3 The Laser Output Field ... 289
7.3.1 Free Field and Source Field for a Lossy Cavity Mode .. 289
7.3.2 Coherently Driven Cavities ... 293
7.3.3 Correlations Between the Free Field and Source Field for Thermal Reservoirs 295
7.3.4 Spectrum of the Free Field plus Source Field for the Laser Below Threshold 302

8. The Single-Mode Homogeneously Broadened Laser II: Phase-Space Analysis 305
 8.1 Linearization:
 Laser Fokker–Planck Equation Below Threshold 305
 8.1.1 System Size Expansion Below Threshold 305
 8.1.2 Laser Equations Without Fluctuations ... 312
 8.1.3 Linearized Treatment of Quantum Fluctuations Below Threshold 316
 8.1.4 Adiabatic Elimination of the Polarization and Laser Linewidth 320
 8.2 Laser Fokker–Planck Equation at Threshold ... 325
 8.2.1 System Size Expansion and Adiabatic Elimination of Atomic Variables ... 326
 8.2.2 Steady-State Solution and Threshold Photon Number 329
 8.3 Quasi-Linearization:
 Laser Fokker–Planck Equation Above Threshold 331
 8.3.1 System Size Expansion Above Threshold ... 333
 8.3.2 Adiabatic Elimination ... 340
 8.3.3 Quantum Fluctuations Above Threshold ... 345

References .. 349
Index .. 357