TABLE OF CONTENTS

Chapter I: Measures

Definition of measure 3; regular measure 4; outer measure 6; measurable set 8; Hahn extension theorem 10; monotone families of sets 12; completion of measures 14; Borel sets and construction of Lebesgue measure in the real line 15; the Cantor set 16; a non-measurable set 16.

Chapter II: Integration

Measure spaces and measurable functions 19; definition of the integral for non-negative functions 22; the integral as a measure 23; linearity of the integral 25; monotone convergence theorem 28; Fatou's lemma 30; the integral for real-valued functions 32; the integral for complex-valued functions 33; dominated convergence theorem 34; bounded convergence theorem 35; Egoroff's theorem 36; convergence in measure 37; L_p-convergence 39; the Lebesgue and Riemann integrals 41.

Chapter III: The Theorems of Fubini

Definition of $\mathcal{X} \times \mathcal{Y}$ 45; simple functions 49; interchange of integration for non-negative functions 51; interchange of integration for L_1 functions 51; completion of $\mathcal{X} \times \mathcal{Y}$ 52; a theorem on change of variables in integration 54.

Chapter IV: Representations of Measures

Definition of $|\mu|$ 58; Jordan decomposition theorem 60; Hahn decomposition theorem 62; the integral for complex measures 64;
functions of bounded variation 64; the Cantor function 66; absolutely continuous measures 67; Radon-Nikodym theorem 69; the Radon-Nikodym derivative 73; mutually singular measures 73; Lebesgue decomposition theorem 74;

Chapter V: The Lebesgue Spaces

Hölder's inequality 79; completeness of L_p 81; functions on regular measure spaces 84; continuity of translation in L_p norm 85; continuous linear functionals 86; weak and strong convergence of functionals 88; the dual spaces of L_p 91; the dual space of $C_0(S)$ 95.

Chapter VI: Differentiation

Derivative of a measure 107; Vitali covering theorem 108; upper and lower derivates 110; regularity of finite Borel measures 111; existence of $D\mu(x)$ a.e. 114; convergence of measures 116; points of density and dispersion 117; differentiation of integrals 118; differentiation of singular measures 119; the Lebesgue set 120; integration by parts 122.

Chapter VII: Fourier Series

Orthogonal systems of functions 123; definition of Fourier series and Fourier coefficients 125; Bessel's inequality 126; Riesz-Fischer theorem 127; complete systems 128; completeness of exponential and trigonometric systems 129; Poisson kernel 132; positive kernels 136; Riemann-Lebesgue theorem 139; the kernel $D_n(u)$ 141; Dirichlet-Jordan theorem 142; integration of Fourier series 147; Abel summability of Fourier series 149; $(C, 1)$ summability of Fourier series 149; $(C, 1)$ summability of Fourier series on L_1 151; a continuous function whose Fourier series diverges at 0 153; uniform boundedness theorem 156; L_p convergence of Fourier series 157; M. Riesz interpolation theorem 163; Hausdorff-Young theorem 166.