Bézier and B-Spline Techniques

With 182 Figures
I Curves

1 Geometric fundamentals
 1.1 Affine spaces 3
 1.2 Affine combinations 4
 1.3 Affine maps 5
 1.4 Parametric curves and surfaces 6
 1.5 Problems 7

2 Bézier representation
 2.1 Bernstein polynomials 9
 2.2 Bézier Representation 11
 2.3 The de Casteljau algorithm 13
 2.4 Derivatives 15
 2.5 Singular parametrization 17
 2.6 A tetrahedral algorithm 17
 2.7 Integration 19
 2.8 Conversion to Bézier representation 20
 2.9 Conversion to monomial form 22
 2.10 Problems 22

3 Bézier techniques
 3.1 Symmetric polynomials 25
 3.2 The main theorem 27
 3.3 Subdivision 27
 3.4 Convergence under subdivision 29
 3.5 Curve generation by subdivision 30
 3.6 Curve generation by forward differences 32
 3.7 Intersections 32
 3.8 The variation diminishing property 34
 3.9 The symmetric polynomial of the derivative 35
 3.10 Simple C^r joints 36
Contents

3.11 Degree elevation 37
3.12 Convergence under degree elevation 39
3.13 Problems 40

4 Interpolation and approximation 43
4.1 Interpolation 43
4.2 Lagrange form 44
4.3 Newton form 47
4.4 Hermite interpolation 48
4.5 Piecewise cubic Hermite interpolation 49
4.6 Approximation 52
4.7 Least squares fitting 53
4.8 Improving the parameter 55
4.9 Problems 56

5 B-spline representation 59
5.1 Splines 59
5.2 B-splines 60
5.3 A recursive definition of B-splines 61
5.4 The de Boor algorithm 63
5.5 The main theorem in its general form 65
5.6 Derivatives and smoothness 67
5.7 B-spline properties 68
5.8 Conversion to B-spline form 69
5.9 The complete de Boor algorithm 70
5.10 Conversions between Bézier and B-spline representations 72
5.11 B-splines as divided differences 73
5.12 Problems 74

6 B-spline techniques 77
6.1 Knot insertion 77
6.2 The Oslo algorithm 79
6.3 Convergence under knot insertion 80
6.4 A degree elevation algorithm 81
6.5 A degree elevation formula 82
6.6 Convergence under degree elevation 83
6.7 Interpolation 84
6.8 Cubic spline interpolation 86
6.9 Problems 88
7 Smooth curves

- 7.1 Contact of order r 91
- 7.2 Arc length parametrization 93
- 7.3 Gamma-splines 94
- 7.4 Gamma B-splines 95
- 7.5 Nu-splines 96
- 7.6 The Frenet frame 97
- 7.7 Frenet frame continuity 98
- 7.8 Osculants and symmetric polynomials 100
- 7.9 Geometric meaning of the main theorem 102
- 7.10 Splines with arbitrary connection matrices 103
- 7.11 Knot insertion 105
- 7.12 Basis splines 105
- 7.13 Problems 106

8 Uniform subdivision

- 8.1 Uniform B-splines 109
- 8.2 Uniform subdivision 110
- 8.3 Repeated subdivision 112
- 8.4 The subdivision matrix 114
- 8.5 Derivatives 115
- 8.6 Stationary subdivision 115
- 8.7 Convergence theorems 116
- 8.8 Computing the difference scheme 117
- 8.9 The four-point scheme 119
- 8.10 Analyzing the four-point scheme 120
- 8.11 Problems 120

II Surfaces

9 Tensor product surfaces

- 9.1 Tensor products 125
- 9.2 Tensor product Bézier surfaces 127
- 9.3 Tensor product polar forms 130
- 9.4 Conversion to and from monomial form 131
- 9.5 The de Casteljau algorithm 132
- 9.6 Derivatives 133
- 9.7 Simple C^r joints 135
- 9.8 Piecewise bicubic C^1 interpolation 135
XII

Contents

9.9 Surfaces of arbitrary topology 136
9.10 Singular parametrization 138
9.11 Bicubic C^1 splines of arbitrary topology 139
9.12 Problems 140

10 Bézier representation of triangular patches
10.1 Bernstein polynomials 141
10.2 Bézier simplices 143
10.3 Linear precision 145
10.4 The de Casteljau algorithm 146
10.5 Derivatives 147
10.6 Convexity 149
10.7 Limitations of the convexity property 150
10.8 Problems 152

11 Bézier techniques for triangular patches
11.1 Symmetric polynomials 155
11.2 The main theorem 157
11.3 Subdivision and reparametrization 158
11.4 Convergence under subdivision 160
11.5 Surface generation 160
11.6 The symmetric polynomial of the derivative 162
11.7 Simple C^r joints 162
11.8 Degree elevation 164
11.9 Convergence under degree elevation 165
11.10 Conversion to tensor product Bézier representation 166
11.11 Conversion to triangular Bézier representation 167
11.12 Problems 168

12 Interpolation
12.1 Triangular Hermite interpolation 171
12.2 The Clough-Tocher interpolant 172
12.3 The Powell-Sabin interpolant 173
12.4 Surfaces of arbitrary topology 174
12.5 Singular parametrization 175
12.6 Quintic C^1 splines of arbitrary topology 176
12.7 Problems 178

13 Constructing smooth surfaces
13.1 The general C^1 joint 179
III Multivariate Splines

17 Box splines
 17.1 Definition of box splines
 17.2 Box splines as shadows
 17.3 Properties of box splines
 17.4 Derivatives of box splines
 17.5 Box spline surfaces
 17.6 Subdivision for box spline surfaces
 17.7 Convergence under subdivision
 17.8 Half-box splines
 17.9 Half-box spline surfaces
 17.10 Problems

18 Simplex splines
 18.1 Shadows of simplices
 18.2 Properties of simplex splines
 18.3 Normalized simplex splines
 18.4 Knot insertion
 18.5 A recurrence relation
 18.6 Derivatives
 18.7 Problems

19 Multivariate splines
 19.1 Generalizing de Casteljau’s algorithm
 19.2 B-polynomials and B-patches
 19.3 Linear precision
 19.4 Derivatives of a B-patch
 19.5 Multivariate B-splines
 19.6 Linear combinations of B-splines
 19.7 A recurrence relation
 19.8 Derivatives of a spline
 19.9 The main theorem
 19.10 Problems

References
Index