Quasielastic Neutron Scattering

Principles and Applications in Solid State Chemistry, Biology and Materials Science

M Bée

Laboratoire de Dynamique des Cristaux Moléculaires,
Université des Sciences et des Techniques de Lille Flandres Artois, France

Adam Hilger, Bristol and Philadelphia
Contents

Preface xi

1 Survey of the Book 1
2 General Aspects of Neutron Scattering 9
 2.1 Properties of the neutron 9
 2.2 Definition of the cross sections 11
 2.3 Neutron spectroscopy 28
 2.4 Linear response function, relaxation function and generalised susceptibility 36
 2.5 Interpretation of the correlation functions in the classical approximation 42
 2.6 General expression of the incoherent quasielastic neutron scattering for molecules 44
 2.7 Neutron spectroscopy of internal vibrations 48
 2.8 Phonon scattering 53
 2.9 Combination of the different kinds of motions 66
 2.10 General properties of the rotational and translational scattering functions 68
 Appendix A 71

3 Instruments and Methods in Cold Neutron Scattering 72
 3.1 Introduction 72
 3.2 Time-of-flight spectrometers 81
 3.3 Backscattering spectrometers 91
 3.4 Neutron spin-echo spectrometers 100
 3.5 Conclusion 105

4 Multiple Scattering Effects 107
 4.1 Introduction 107
 4.2 Expansion of the effective scattering law 110
4.3 Evaluation of the scattered fluxes of successive orders in the particular case of quasielastic incoherent scattering 124
4.4 Examples of the application of the quasielastic approximation 132
4.5 Monte Carlo simulation techniques 138
Appendix: Evaluation of the attenuation corrections for single scattering from samples confined within containers

5 Long-range Translational Diffusion 148
5.1 The continuous diffusion model 150
5.2 The jump-diffusion model 156
5.3 Diffuse motion in water 167

6 Molecular Reorientations in Orientationally Disordered Crystals 176
6.1 Rotational potential in plastic crystals 176
6.2 Isotropic rotational diffusion 180
6.3 Examples of molecular isotropic rotational diffusion 183
6.4 Continuous rotational diffusion on a circle 186
6.5 Jump model among two sites 189
6.6 Jumps among three equivalent sites equally spaced on a circle 194
6.7 Jump model among N equivalent sites on a circle 197
6.8 Examples of jump models over a circle 203
6.9 Reorientations of a molecule about several different axes in space 209
6.10 Reorientations about mobile and fixed axes 228
6.11 Extension of the application of group-theory formalism for the evaluation of the neutron scattering law 242
6.12 Conclusion 249

7 Recent Developments in the Investigation of Orientationally Disordered Phases 250
7.1 Introduction 250
7.2 Uniaxial rotation with non-uniform distribution 252
7.3 Rotation over a sphere with non-uniform distribution 253
7.4 Stochastic equations 265
7.5 Neutron scattering law for a uniaxial rotator in an N-fold potential 275
7.6 IONS law for a particle diffusing in a cosine potential in one dimension 287
7.7 Rotational diffusion in a three-dimensional potential 290
7.8 The microscopic approach 306
7.9 Investigation of orientational disorder by Raman and infrared spectroscopies 316
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Single-crystal and Partially Oriented Sample Studies</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>8.1 Single-crystal studies</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>8.2 Two-dimensional compounds</td>
<td>343</td>
</tr>
<tr>
<td>9</td>
<td>Quasielastic Neutron Scattering for Continuous or Random Jump-diffusion of Molecules in Bounded Media</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td>9.1 One-dimensional diffusion between two walls</td>
<td>358</td>
</tr>
<tr>
<td></td>
<td>9.2 Three-dimensional diffusion in a potential of spherical symmetry</td>
<td>363</td>
</tr>
<tr>
<td></td>
<td>9.3 Restricted diffusion inside a volume with an anisotropic shape</td>
<td>374</td>
</tr>
<tr>
<td></td>
<td>9.4 Random jump-diffusion in bounded media</td>
<td>378</td>
</tr>
<tr>
<td></td>
<td>9.5 Adsorption of molecules by zeolites</td>
<td>385</td>
</tr>
<tr>
<td>10</td>
<td>Dynamical Studies of Polymers and Biomolecules</td>
<td>399</td>
</tr>
<tr>
<td></td>
<td>10.1 Polymers in solution and in melts</td>
<td>399</td>
</tr>
<tr>
<td></td>
<td>10.2 Biomolecular applications of quasi-elastic neutron scattering</td>
<td>405</td>
</tr>
</tbody>
</table>

References 419

Index 433