Interpolation of Operators and Singular Integrals

An Introduction to Harmonic Analysis

Cora Sadosky

Universidad Central de Venezuela
Caracas, Venezuela

MARCEL DEKKER, INC. New York and Basel
4. The Bochner theorem 79
5. An application to convergence theorems 82
References 86

Chapter 3 INVERSION THEORY AND HARMONIC FUNCTIONS

1. Summation of Fourier integrals 89
2. Fourier transforms in L^2 and the Plancherel theorem 106
3. Harmonic functions 114
4. Poisson integrals 129
References 138

Chapter 4 INTERPOLATION OF OPERATORS IN L^p SPACES

1. The M. Riesz-Thorin convexity theorem 139
2. Proof of the M. Riesz-Thorin theorem by the complex method 150
3. Distribution functions and weak type operators 157
4. The Marcinkiewicz interpolation theorem: diagonal case 169
*5. The Marcinkiewicz interpolation theorem: general case 179
6. Kolmogoroff and Zygmund conditions 190
References 193

Chapter 5 MAXIMAL THEORY AND THE SPACE BMO

1. The Hardy-Littlewood maximal theorem 195
2. Applications to Poisson integrals 205
3. Maximal operators and the space BMO 211
4. The method of maximal functions 228
5. Ergodic theorems 235
References 249

Chapter 6 SINGULAR INTEGRALS

1. The Hilbert transform in L^2 251
2. Singular integrals: the L^2 theory 266
3. General theorems in L^p and BMO 286
4. The Calderón-Zygmund singular integrals 300
5. Pointwise convergence of singular integrals 311
*6. Extensions to Lebesgue spaces with weighted measures 317
References 339
CONTENTS xi

Appendix A: SINGULAR INTEGRALS AND PARTIAL DIFFERENTIAL EQUATIONS 341

Appendix B: THE COMPLEX METHOD OF INTERPOLATION 349

Bibliography 363

Glossary of principal symbols 365

Index 369