Response Surface Methodology
Process and Product Optimization
Using Designed Experiments

Second Edition

RAYMOND H. MYERS
Virginia Polytechnic Institute and State University

DOUGLAS C. MONTGOMERY
Arizona State University

A Wiley-Interscience Publication
JOHN WILEY & SONS, INC.
Contents

Preface xiii

1. Introduction 1
 1.1 Response Surface Methodology, 1
 1.1.1 Approximating Response Functions, 3
 1.1.2 The Sequential Nature of RSM, 10
 1.1.3 Objectives and Typical Applications of RSM, 12
 1.1.4 RSM and the Philosophy of Quality Improvement, 13
 1.2 Product Design and Formulation (Mixture Problems), 14
 1.3 Robust Design and Process Robustness Studies, 15
 1.4 Useful References on RSM, 16

2 Building Empirical Models 17
 2.1 Linear Regression Models, 17
 2.2 Estimation of the Parameters in Linear Regression Models, 18
 2.3 Properties of the Least Squares Estimators and Estimation of \(\sigma^2 \), 25
 2.4 Hypothesis Testing in Multiple Regression, 29
 2.4.1 Test for Significance of Regression, 29
 2.4.2 Tests on Individual Regression Coefficients and Groups of Coefficients, 33
 2.5 Confidence Intervals in Multiple Regression, 37
 2.5.1 Confidence Intervals on the Individual Regression Coefficients \(\beta \), 38
2.5.2 A Joint Confidence Region on the Regression Coefficients β, 38
2.5.3 Confidence Interval on the Mean Response, 39
2.6 Prediction of New Response Observations, 41
2.7 Model Adequacy Checking, 43
2.7.1 Residual Analysis, 43
2.7.2 Scaling Residuals, 44
2.7.3 Influence Diagnostics, 50
2.7.4 Testing for Lack of Fit, 51
2.8 Fitting a Second-Order Model, 56
2.9 Qualitative Regressor Variables, 65
2.10 Transformation of the Response Variable, 68
Exercises, 74

3 Two-Level Factorial Designs

3.1 Introduction, 85
3.2 The 2^2 Design, 85
3.3 The 2^3 Design, 100
3.4 The General 2^k Design, 111
3.5 A Single Replicate of the 2^k Design, 112
3.6 The Addition of Center Points to the 2^k Design, 128
3.7 Blocking in the 2^k Factorial Design, 134
3.7.1 Blocking in the Replicated Design, 134
3.7.2 Confounding in the 2^k Design, 136
Exercises, 143

4 Two-Level Fractional Factorial Designs

4.1 Introduction, 155
4.2 The One-Half Fraction of the 2^k Design, 156
4.3 The One-Quarter Fraction of the 2^k Design, 170
4.4 The General 2^{k-p} Fractional Factorial Design, 178
4.5 Resolution III Designs, 183
4.6 Resolution IV and V Designs, 192
4.7 Summary, 194
Exercises, 195

5 Process Improvement with Steepest Ascent

5.1 Determining the Path of Steepest Ascent, 205
5.1.1 Development of the Procedure, 205
CONTENTS

5.1.2 Practical Application of the Method of Steepest Ascent, 207
5.2 Consideration of Interaction and Curvature, 213
 5.2.1 What About a Second Phase?, 216
 5.2.2 What Happens Following Steepest Ascent?, 216
5.3 Effect of Scale (Choosing Range of Factors), 218
5.4 Confidence Region for Direction of Steepest Ascent, 220
5.5 Steepest Ascent Subject to a Linear Constraint, 224
Exercises, 229

6 The Analysis of Second-Order Response Surfaces 235
 6.1 Second-Order Response Surface, 235
 6.2 Second-Order Approximating Function, 235
 6.2.1 The Nature of the Second-Order Function and Second-Order Surface, 236
 6.2.2 Illustration of Second-Order Response Surfaces, 237
 6.3 A Formal Analytical Approach to the Second-Order Model, 241
 6.3.1 Location of the Stationary Point, 242
 6.3.2 Nature of the Stationary Point (Canonical Analysis), 242
 6.3.3 Ridge Systems, 247
 6.3.4 Role of Contour Plots, 251
 6.4 Ridge Analysis of the Response Surface, 254
 6.4.1 What Is the Value of Ridge Analysis?, 255
 6.4.2 Mathematical Development of Ridge Analysis, 255
 6.5 Sampling Properties of Response Surface Results, 262
 6.5.1 Standard Error of Predicted Response, 262
 6.5.2 Confidence Region on the Location of the Stationary Point, 264
 6.5.3 Use and Computation of the Confidence Region on the Location of the Stationary Point, 266
 6.5.4 Confidence Intervals on Eigenvalues in Canonical Analysis, 271
 6.6 Multiple Response Optimization, 273
 6.7 Further Comments Concerning Response Surface Analysis, 286
Exercises, 287
7 Experimental Designs for Fitting Response Surfaces—I 303

7.1 Desirable Properties of Response Surface Designs, 303
7.2 Operability Region, Region of Interest, and Model Inadequacy, 304
7.3 Design of Experiments for First-Order Models, 307
 7.3.1 The First-Order Orthogonal Design, 308
 7.3.2 Orthogonal Designs for Models Containing Interaction, 310
 7.3.3 Other First-Order Orthogonal Designs—The Simplex Design, 314
 7.3.4 Another Variance Property—Prediction Variance, 318
7.4 Designs for Fitting Second-Order Models, 321
 7.4.1 The Class of Central Composite Designs, 321
 7.4.2 Property of Rotatability, 328
 7.4.3 Rotatability and the CCD, 331
 7.4.4 The Cuboidal Region and the Face-Centered Cube, 335
 7.4.5 When Is the Design Region Spherical?, 337
 7.4.6 Summary Statements Regarding CCD, 342
 7.4.7 The Box–Behnken Design, 343
 7.4.8 Other Spherical RSM Designs; Equiradial Designs, 351
 7.4.9 Orthogonal Blocking in Second-Order Designs, 353
Exercises, 366

8 Experimental Designs for Fitting Response Surfaces—II 377

8.1 Designs That Require a Relatively Small Run Size, 378
 8.1.1 The Small Composite Design, 378
 8.1.2 Koshal Design, 384
 8.1.3 Hybrid Designs, 386
 8.1.4 Some Saturated or Near-Saturated Cuboidal Designs, 390
8.2 General Criteria for Constructing, Evaluating, and Comparing Experimental Designs, 390
 8.2.1 Practical Design Optimality, 393
 8.2.2 Use of Design Efficiencies for Comparison of Standard Second-Order Designs, 399
 8.2.3 Graphical Procedure for Evaluating the Prediction Capability of an RSM Design, 402
8.3 Computer-Generated Designs in RSM, 413
 8.3.1 Important Relationship Between Prediction Variance and Design Augmentation for D-Optimality, 414
 8.3.2 Illustrations Involving Computer-Generated Design, 416
8.4 Some Final Comments Concerning Design Optimality and Computer-Generated Design, 428
Exercises, 429

9. Advanced Response Surface Topics—I 437
 9.1 Effects of Model Bias on the Fitted Model and Design, 437
 9.2 A Design Criterion Involving Bias and Variance, 441
 9.2.1 The Case of a First-Order Fitted Model and Cuboidal Region, 444
 9.2.2 Minimum Bias Designs for a Spherical Region of Interest, 451
 9.2.3 Simultaneous Consideration of Bias and Variance, 453
 9.2.4 How Important Is Bias?, 454
 9.3 RSM in the Presence of Qualitative Variables, 456
 9.3.1 Models That Are First-Order in the Quantitative Design Variables (Two-Level Design), 457
 9.3.2 First-Order Models with More Than Two Levels of the Qualitative Factors, 459
 9.3.3 Models with Interaction Among Qualitative and Quantitative Variables, 460
 9.3.4 Design Considerations: First-Order Models With and Without Interaction, 461
 9.3.5 Design Considerations: Models That Are Second-Order in the Quantitative Variables, 465
 9.3.6 Use of Computer-Generated Designs, 468
 9.3.7 Further Comments about Qualitative Variables, 478
 9.4 Errors in Control of Design Levels, 478
 9.5 Experiments with Computer Models, 481
 9.6 Minimum Bias Estimation of Response Surface Models, 485
 9.7 Neural Networks, 489
Exercises, 492
10. Advanced Response Surface Topics—II

10.1 RSM for Nonnormal Responses—Generalized Linear Models, 501
 10.1.1 Model Framework: The Link Function, 502
 10.1.2 The Canonical Link Function, 502
 10.1.3 Basis For Estimation of Model Coefficients, 503
 10.1.4 Properties of Model Coefficients, 505
 10.1.5 Model Deviance, 506
 10.1.6 Overdispersion, 507
 10.1.7 Examples, 509
 10.1.8 Diagnostic Plots and Other Aspects of the GLM, 516

10.2 Restrictions in Randomization in RSM, 521
 10.2.1 The Dilemma of Difficult-to-Change Factors, 522
 10.2.2 Split-Plot Structures, 522
 10.2.3 RSM Estimation and Testing under a Split-Plot Structure, 526
 10.2.4 Mixed Model Approach, 528
 10.2.5 Use of Generalized Estimating Equations, 529

Exercises, 532

11 Robust Parameter Design and Process Robustness Studies

11.1 Introduction, 536
11.2 What Is Parameter Design?, 536
 11.2.1 Examples of Noise Variables, 537
 11.2.2 An Example of Robust Product Design, 538
11.3 The Taguchi Approach, 539
 11.3.1 Crossed Array Designs and Signal-to-Noise Ratios, 539
 11.3.2 Analysis Methods, 543
 11.3.3 Further Comments, 550
11.4 The Response Surface Approach, 552
 11.4.1 The Role of the Control × Noise Interaction, 552
 11.4.2 A Model Containing Both Control and Noise Variables, 557
 11.4.3 Generalization of Mean and Variance Modeling, 561
 11.4.4 Analysis Procedures Associated with the Two Response Surfaces, 565
 11.4.5 Estimation of the Process Variance, 574
11.4.6 Direct Variance Modeling, 579
11.4.7 Use of Generalized Linear Models, 582

11.5 Experimental Designs for RPD and Process Robustness Studies, 586
11.5.1 Combined Array Designs, 587
11.5.2 Second-Order Designs, 589
11.5.3 Summary Remarks, 591

11.6 Dispersion Effects in Highly Fractionated Designs, 591
11.6.1 The Use of Residuals, 592
11.6.2 Further Diagnostic Information from Residuals, 593
11.6.3 Further Comments Concerning Variance Modeling, 601

Exercises, 605

12 Experiments with Mixtures

12.1 Introduction, 614
12.2 Simplex Designs and Canonical Mixture Polynomials, 618
12.2.1 Simplex Lattice Designs, 618
12.2.2 The Simplex-Centroid Design and Its Associated Polynomial, 628
12.2.3 Augmentation of Simplex Designs with Axial Runs, 630
12.3 Response Trace Plots, 638
12.4 Reparameterizing Canonical Mixture Models to Contain a Constant Term (β_0), 639

Exercises, 643

13 Other Mixture Design and Analysis Techniques

13.1 Constraints on the Component Proportions, 652
13.1.1 Lower-Bound Constraints on the Component Proportions, 653
13.1.2 Upper-Bound Constraints on the Component Proportions, 665
13.1.3 Active Upper- and Lower-Bound Constraints, 668
13.1.4 Multicomponent Constraints, 684
13.2 Mixture Experiments Using Ratios of Components, 685
13.3 Process Variables in Mixture Experiments, 690
13.4 Screening Mixture Components, 701

Exercises, 704
CONTENTS

14 Continuous Process Improvement with Evolutionary Operation 715
 14.1 Introduction, 715
 14.2 An Example of EVOP, 716
 14.3 EVOP Using Software, 721
 14.4 Simplex EVOP, 725
 14.5 Some Practical Advice About Using EVOP, 727
Exercises, 728

References 731

Appendix 1. Variable Selection and Model Building in Regression 742
Appendix 2. Multicollinearity and Biased Estimation in Regression 759
Appendix 3. Robust Regression 770
Appendix 4. Some Mathematical Insights into Ridge Analysis 778
Appendix 5. Moment Matrix of a Rotatable Design 779
Appendix 6. Rotatability of a Second-Order Equiradial Design 784
Appendix 7. Relationship Between D-Optimality and the Volume of a Joint Confidence Ellipsoid on β 787
Appendix 8. Relationship Between the Maximum Prediction Variance in a Region and the Number of Parameters 789
Appendix 9. The Development of Equation (8.21) 790
Appendix 10. Determination of Data Augmentation Result
(Choice of \(x_{r+1}\) for the Sequential Development of a D-Optimal Design) 791

Index 793