Experimental Design and Data Analysis for Biologists

Gerry P. Quinn
Monash University

Michael J. Keough
University of Melbourne
Contents

Preface page xv

1 Introduction 1
 1.1 Scientific method 1
 1.1.1 Pattern description 2
 1.1.2 Models 2
 1.1.3 Hypotheses and tests 3
 1.1.4 Alternatives to falsification 4
 1.1.5 Role of statistical analysis 5
 1.2 Experiments and other tests 5
 1.3 Data, observations and variables 7
 1.4 Probability 7
 1.5 Probability distributions 9
 1.5.1 Distributions for variables 10
 1.5.2 Distributions for statistics 12

2 Estimation 14
 2.1 Samples and populations 14
 2.2 Common parameters and statistics 15
 2.2.1 Center (location) of distribution 15
 2.2.2 Spread or variability 16
 2.3 Standard errors and confidence intervals for the mean 17
 2.3.1 Normal distributions and the Central Limit Theorem 17
 2.3.2 Standard error of the sample mean 18
 2.3.3 Confidence intervals for population mean 19
 2.3.4 Interpretation of confidence intervals for population mean 20
 2.3.5 Standard errors for other statistics 20
 2.4 Methods for estimating parameters 23
 2.4.1 Maximum likelihood (ML) 23
 2.4.2 Ordinary least squares (OLS) 24
 2.4.3 ML vs OLS estimation 25
 2.5 Resampling methods for estimation 25
 2.5.1 Bootstrap 25
 2.5.2 Jackknife 26
 2.6 Bayesian inference – estimation 27
 2.6.1 Bayesian estimation 27
 2.6.2 Prior knowledge and probability 28
 2.6.3 Likelihood function 28
 2.6.4 Posterior probability 28
 2.6.5 Examples 29
 2.6.6 Other comments 29
5 Correlation and regression

5.1 Correlation analysis
 5.1.1 Parametric correlation model
 5.1.2 Robust correlation
 5.1.3 Parametric and non-parametric confidence regions

5.2 Linear models
5.3 Linear regression analysis
 5.3.1 Simple (bivariate) linear regression
 5.3.2 Linear model for regression
 5.3.3 Estimating model parameters
 5.3.4 Analysis of variance
 5.3.5 Null hypotheses in regression
 5.3.6 Comparing regression models
 5.3.7 Variance explained
 5.3.8 Assumptions of regression analysis
 5.3.9 Regression diagnostics
 5.3.10 Diagnostic graphics
 5.3.11 Transformations
 5.3.12 Regression through the origin
 5.3.13 Weighted least squares
 5.3.14 X random (Model II regression)
 5.3.15 Robust regression

5.4 Relationship between regression and correlation
5.5 Smoothing
 5.5.1 Running means
 5.5.2 LO(W)ESS
 5.5.3 Splines
 5.5.4 Kernels
 5.5.5 Other issues
5.6 Power of tests in correlation and regression
5.7 General issues and hints for analysis
 5.7.1 General issues
 5.7.2 Hints for analysis

6 Multiple and complex regression

6.1 Multiple linear regression analysis
 6.1.1 Multiple linear regression model
 6.1.2 Estimating model parameters
 6.1.3 Analysis of variance
 6.1.4 Null hypotheses and model comparisons
 6.1.5 Variance explained
 6.1.6 Which predictors are important?
 6.1.7 Assumptions of multiple regression
 6.1.8 Regression diagnostics
 6.1.9 Diagnostic graphics
 6.1.10 Transformations
 6.1.11 Collinearity
CONTENTS

6.1.12 Interactions in multiple regression 130
6.1.13 Polynomial regression 133
6.1.14 Indicator (dummy) variables 135
6.1.15 Finding the “best” regression model 137
6.1.16 Hierarchical partitioning 141
6.1.17 Other issues in multiple linear regression 142
6.2 Regression trees 143
6.3 Path analysis and structural equation modeling 145
6.4 Nonlinear models 150
6.5 Smoothing and response surfaces 152
6.6 General issues and hints for analysis 153
6.6.1 General issues 153
6.6.2 Hints for analysis 154

7 Design and power analysis 155
7.1 Sampling 155
7.1.1 Sampling designs 155
7.1.2 Size of sample 157
7.2 Experimental design 157
7.2.1 Replication 158
7.2.2 Controls 160
7.2.3 Randomization 161
7.2.4 Independence 163
7.2.5 Reducing unexplained variance 164
7.3 Power analysis 164
7.3.1 Using power to plan experiments (a priori power analysis) 166
7.3.2 Post hoc power calculation 168
7.3.3 The effect size 168
7.3.4 Using power analyses 170
7.4 General issues and hints for analysis 171
7.4.1 General issues 171
7.4.2 Hints for analysis 172

8 Comparing groups or treatments – analysis of variance 173
8.1 Single factor (one way) designs 173
8.1.1 Types of predictor variables (factors) 176
8.1.2 Linear model for single factor analyses 178
8.1.3 Analysis of variance 184
8.1.4 Null hypotheses 186
8.1.5 Comparing ANOVA models 187
8.1.6 Unequal sample sizes (unbalanced designs) 187
8.2 Factor effects 188
8.2.1 Random effects: variance components 188
8.2.2 Fixed effects 190
8.3 Assumptions 191
8.3.1 Normality 192
8.3.2 Variance homogeneity 193
8.3.3 Independence 193
8.4 ANOVA diagnostics 194
8.5 Robust ANOVA 195
 8.5.1 Tests with heterogeneous variances 195
 8.5.2 Rank-based ("non-parametric") tests 195
 8.5.3 Randomization tests 196
8.6 Specific comparisons of means 196
 8.6.1 Planned comparisons or contrasts 197
 8.6.2 Unplanned pairwise comparisons 199
 8.6.3 Specific contrasts versus unplanned pairwise comparisons 201
8.7 Tests for trends 202
8.8 Testing equality of group variances 203
8.9 Power of single factor ANOVA 204
8.10 General issues and hints for analysis 206
 8.10.1 General issues 206
 8.10.2 Hints for analysis 206

9 Multifactor analysis of variance 208
9.1 Nested (hierarchical) designs 208
 9.1.1 Linear models for nested analyses 210
 9.1.2 Analysis of variance 214
 9.1.3 Null hypotheses 215
 9.1.4 Unequal sample sizes (unbalanced designs) 216
 9.1.5 Comparing ANOVA models 216
 9.1.6 Factor effects in nested models 216
 9.1.7 Assumptions for nested models 218
 9.1.8 Specific comparisons for nested designs 219
 9.1.9 More complex designs 219
 9.1.10 Design and power 219
9.2 Factorial designs 221
 9.2.1 Linear models for factorial designs 225
 9.2.2 Analysis of variance 230
 9.2.3 Null hypotheses 232
 9.2.4 What are main effects and interactions really measuring? 237
 9.2.5 Comparing ANOVA models 241
 9.2.6 Unbalanced designs 241
 9.2.7 Factor effects 247
 9.2.8 Assumptions 249
 9.2.9 Robust factorial ANOVAs 250
 9.2.10 Specific comparisons on main effects 250
 9.2.11 Interpreting interactions 251
 9.2.12 More complex designs 255
 9.2.13 Power and design in factorial ANOVA 259
9.3 Pooling in multifactor designs 260
9.4 Relationship between factorial and nested designs 261
9.5 General issues and hints for analysis 261
 9.5.1 General issues 261
 9.5.2 Hints for analysis 261
Randomized blocks and simple repeated measures: unreplicated two factor designs

10.1 Unreplicated two factor experimental designs
 10.1.1 Randomized complete block (RCB) designs
 10.1.2 Repeated measures (RM) designs

10.2 Analyzing RCB and RM designs
 10.2.1 Linear models for RCB and RM analyses
 10.2.2 Analysis of variance
 10.2.3 Null hypotheses
 10.2.4 Comparing ANOVA models

10.3 Interactions in RCB and RM models
 10.3.1 Importance of treatment by block interactions
 10.3.2 Checks for interaction in unreplicated designs

10.4 Assumptions
 10.4.1 Normality, independence of errors
 10.4.2 Variances and covariances – sphericity
 10.4.3 Recommended strategy

10.5 Robust RCB and RM analyses

10.6 Specific comparisons

10.7 Efficiency of blocking (to block or not to block?)

10.8 Time as a blocking factor

10.9 Analysis of unbalanced RCB designs

10.10 Power of RCB or simple RM designs

10.11 More complex block designs
 10.11.1 Factorial randomized block designs
 10.11.2 Incomplete block designs
 10.11.3 Latin square designs
 10.11.4 Crossover designs

10.12 Generalized randomized block designs

10.13 RCB and RM designs and statistical software

10.14 General issues and hints for analysis
 10.14.1 General issues
 10.14.2 Hints for analysis

Split-plot and repeated measures designs: partly nested analyses of variance

11.1 Partly nested designs
 11.1.1 Split-plot designs
 11.1.2 Repeated measures designs
 11.1.3 Reasons for using these designs

11.2 Analyzing partly nested designs
 11.2.1 Linear models for partly nested analyses
 11.2.2 Analysis of variance
 11.2.3 Null hypotheses
 11.2.4 Comparing ANOVA models

11.3 Assumptions
 11.3.1 Between plots/subjects
 11.3.2 Within plots/subjects and multisample sphericity
11.4 Robust partly nested analyses 320
11.5 Specific comparisons 320
 11.5.1 Main effects 320
 11.5.2 Interactions 321
 11.5.3 Profile (i.e. trend) analysis 321
11.6 Analysis of unbalanced partly nested designs 322
11.7 Power for partly nested designs 323
11.8 More complex designs 323
 11.8.1 Additional between-plots/subjects factors 324
 11.8.2 Additional within-plots/subjects factors 329
 11.8.3 Additional between-plots/subjects and within-plots/
 subjects factors 332
 11.8.4 General comments about complex designs 335
11.9 Partly nested designs and statistical software 335
11.10 General issues and hints for analysis 337
 11.10.1 General issues 337
 11.10.2 Hints for individual analyses 337

12 Analyses of covariance 339
12.1 Single factor analysis of covariance (ANCOVA) 339
 12.1.1 Linear models for analysis of covariance 342
 12.1.2 Analysis of (co)variance 347
 12.1.3 Null hypotheses 347
 12.1.4 Comparing ANCOVA models 348
12.2 Assumptions of ANCOVA 348
 12.2.1 Linearity 348
 12.2.2 Covariate values similar across groups 349
 12.2.3 Fixed covariate (X) 349
12.3 Homogeneous slopes 349
 12.3.1 Testing for homogeneous within-group regression slopes 349
 12.3.2 Dealing with heterogeneous within-group regression
 slopes 350
 12.3.3 Comparing regression lines 352
12.4 Robust ANCOVA 352
12.5 Unequal sample sizes (unbalanced designs) 353
12.6 Specific comparisons of adjusted means 353
 12.6.1 Planned contrasts 353
 12.6.2 Unplanned comparisons 353
12.7 More complex designs 353
 12.7.1 Designs with two or more covariates 353
 12.7.2 Factorial designs 354
 12.7.3 Nested designs with one covariate 355
 12.7.4 Partly nested models with one covariate 356
12.8 General issues and hints for analysis 357
 12.8.1 General issues 357
 12.8.2 Hints for analysis 358
13 Generalized linear models and logistic regression

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Generalized linear models</td>
<td>359</td>
</tr>
<tr>
<td>13.2 Logistic regression</td>
<td>360</td>
</tr>
<tr>
<td>13.2.1 Simple logistic regression</td>
<td>360</td>
</tr>
<tr>
<td>13.2.2 Multiple logistic regression</td>
<td>365</td>
</tr>
<tr>
<td>13.2.3 Categorical predictors</td>
<td>368</td>
</tr>
<tr>
<td>13.2.4 Assumptions of logistic regression</td>
<td>368</td>
</tr>
<tr>
<td>13.2.5 Goodness-of-fit and residuals</td>
<td>368</td>
</tr>
<tr>
<td>13.2.6 Model diagnostics</td>
<td>370</td>
</tr>
<tr>
<td>13.2.7 Model selection</td>
<td>370</td>
</tr>
<tr>
<td>13.2.8 Software for logistic regression</td>
<td>371</td>
</tr>
<tr>
<td>13.3 Poisson regression</td>
<td>371</td>
</tr>
<tr>
<td>13.4 Generalized additive models</td>
<td>372</td>
</tr>
<tr>
<td>13.5 Models for correlated data</td>
<td>375</td>
</tr>
<tr>
<td>13.5.1 Multi-level (random effects) models</td>
<td>376</td>
</tr>
<tr>
<td>13.5.2 Generalized estimating equations</td>
<td>377</td>
</tr>
<tr>
<td>13.6 General issues and hints for analysis</td>
<td>378</td>
</tr>
<tr>
<td>13.6.1 General issues</td>
<td>378</td>
</tr>
<tr>
<td>13.6.2 Hints for analysis</td>
<td>379</td>
</tr>
</tbody>
</table>

14 Analyzing frequencies

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Single variable goodness-of-fit tests</td>
<td>381</td>
</tr>
<tr>
<td>14.2 Contingency tables</td>
<td>381</td>
</tr>
<tr>
<td>14.2.1 Two way tables</td>
<td>381</td>
</tr>
<tr>
<td>14.2.2 Three way tables</td>
<td>388</td>
</tr>
<tr>
<td>14.3 Log-linear models</td>
<td>393</td>
</tr>
<tr>
<td>14.3.1 Two way tables</td>
<td>394</td>
</tr>
<tr>
<td>14.3.2 Log-linear models for three way tables</td>
<td>395</td>
</tr>
<tr>
<td>14.3.3 More complex tables</td>
<td>400</td>
</tr>
<tr>
<td>14.4 General issues and hints for analysis</td>
<td>400</td>
</tr>
<tr>
<td>14.4.1 General issues</td>
<td>400</td>
</tr>
<tr>
<td>14.4.2 Hints for analysis</td>
<td>400</td>
</tr>
</tbody>
</table>

15 Introduction to multivariate analyses

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1 Multivariate data</td>
<td>401</td>
</tr>
<tr>
<td>15.2 Distributions and associations</td>
<td>402</td>
</tr>
<tr>
<td>15.3 Linear combinations, eigenvectors and eigenvalues</td>
<td>405</td>
</tr>
<tr>
<td>15.3.1 Linear combinations of variables</td>
<td>405</td>
</tr>
<tr>
<td>15.3.2 Eigenvalues</td>
<td>405</td>
</tr>
<tr>
<td>15.3.3 Eigenvectors</td>
<td>406</td>
</tr>
<tr>
<td>15.3.4 Derivation of components</td>
<td>409</td>
</tr>
<tr>
<td>15.4 Multivariate distance and dissimilarity measures</td>
<td>409</td>
</tr>
<tr>
<td>15.4.1 Dissimilarity measures for continuous variables</td>
<td>412</td>
</tr>
<tr>
<td>15.4.2 Dissimilarity measures for dichotomous (binary) variables</td>
<td>413</td>
</tr>
<tr>
<td>15.4.3 General dissimilarity measures for mixed variables</td>
<td>413</td>
</tr>
<tr>
<td>15.4.4 Comparison of dissimilarity measures</td>
<td>414</td>
</tr>
<tr>
<td>15.5 Comparing distance and/or dissimilarity matrices</td>
<td>414</td>
</tr>
</tbody>
</table>
15.6 Data standardization 415
15.7 Standardization, association and dissimilarity 417
15.8 Multivariate graphics 417
15.9 Screening multivariate data sets 418
 15.9.1 Multivariate outliers 419
 15.9.2 Missing observations 419
15.10 General issues and hints for analysis 423
 15.10.1 General issues 423
 15.10.2 Hints for analysis 424

16 Multivariate analysis of variance and discriminant analysis 425
 16.1 Multivariate analysis of variance (MANOVA) 425
 16.1.1 Single factor MANOVA 426
 16.1.2 Specific comparisons 432
 16.1.3 Relative importance of each response variable 432
 16.1.4 Assumptions of MANOVA 433
 16.1.5 Robust MANOVA 434
 16.1.6 More complex designs 434
 16.2 Discriminant function analysis 435
 16.2.1 Description and hypothesis testing 437
 16.2.2 Classification and prediction 439
 16.2.3 Assumptions of discriminant function analysis 441
 16.2.4 More complex designs 441
 16.3 MANOVA vs discriminant function analysis 441
 16.4 General issues and hints for analysis 441
 16.4.1 General issues 441
 16.4.2 Hints for analysis 441

17 Principal components and correspondence analysis 443
 17.1 Principal components analysis 443
 17.1.1 Deriving components 447
 17.1.2 Which association matrix to use? 450
 17.1.3 Interpreting the components 451
 17.1.4 Rotation of components 451
 17.1.5 How many components to retain? 452
 17.1.6 Assumptions 453
 17.1.7 Robust PCA 454
 17.1.8 Graphical representations 454
 17.1.9 Other uses of components 456
 17.2 Factor analysis 458
 17.3 Correspondence analysis 459
 17.3.1 Mechanics 459
 17.3.2 Scaling and joint plots 461
 17.3.3 Reciprocal averaging 462
 17.3.4 Use of CA with ecological data 462
 17.3.5 Detrending 463
 17.4 Canonical correlation analysis 463
CONTENTS

17.5 Redundancy analysis 466
17.6 Canonical correspondence analysis 467
17.7 Constrained and partial “ordination” 468
17.8 General issues and hints for analysis
 17.8.1 General issues 471
 17.8.2 Hints for analysis 471

18 Multidimensional scaling and cluster analysis 473
18.1 Multidimensional scaling
 18.1.1 Classical scaling – principal coordinates analysis (PCoA) 474
 18.1.2 Enhanced multidimensional scaling 476
 18.1.3 Dissimilarities and testing hypotheses about groups of objects 482
 18.1.4 Relating MDS to original variables 487
 18.1.5 Relating MDS to covariates 487
18.2 Classification
 18.2.1 Cluster analysis 488
18.3 Scaling (ordination) and clustering for biological data 491
18.4 General issues and hints for analysis
 18.4.1 General issues 493
 18.4.2 Hints for analysis 493

19 Presentation of results 494
19.1 Presentation of analyses
 19.1.1 Linear models 494
 19.1.2 Other analyses 497
19.2 Layout of tables 497
19.3 Displaying summaries of the data
 19.3.1 Bar graph 500
 19.3.2 Line graph (category plot) 502
 19.3.3 Scatterplots 502
 19.3.4 Pie charts 503
19.4 Error bars 504
 19.4.1 Alternative approaches 506
19.5 Oral presentations
 19.5.1 Slides, computers, or overheads? 507
 19.5.2 Graphics packages 508
 19.5.3 Working with color 508
 19.5.4 Scanned images 509
 19.5.5 Information content 509
19.6 General issues and hints 510

References 511

Index 527