Contents

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Historical Background</td>
<td>1</td>
</tr>
<tr>
<td>II. Definition of a Virus</td>
<td>9</td>
</tr>
<tr>
<td>III. About this Edition</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Nomenclature and Classification of Plant Viruses</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Nomenclature</td>
<td>13</td>
</tr>
<tr>
<td>A. Historical aspects</td>
<td>13</td>
</tr>
<tr>
<td>B. Systems for classification</td>
<td>14</td>
</tr>
<tr>
<td>C. Families, genera, species and groups</td>
<td>15</td>
</tr>
<tr>
<td>D. Plant virus families, genera and orders</td>
<td>19</td>
</tr>
<tr>
<td>E. Use of virus names</td>
<td>19</td>
</tr>
<tr>
<td>II. Criteria Used for Classifying Viruses</td>
<td>21</td>
</tr>
<tr>
<td>A. Structure of the virus particle</td>
<td>21</td>
</tr>
<tr>
<td>B. Physicochemical properties of virus particles</td>
<td>21</td>
</tr>
<tr>
<td>C. Properties of viral nucleic acids</td>
<td>21</td>
</tr>
<tr>
<td>D. Viral proteins</td>
<td>22</td>
</tr>
<tr>
<td>E. Serological relationships</td>
<td>24</td>
</tr>
<tr>
<td>F. Activities in the plant</td>
<td>25</td>
</tr>
<tr>
<td>G. Methods of transmission</td>
<td>26</td>
</tr>
<tr>
<td>III. Families and Genera of Plant Viruses</td>
<td>27</td>
</tr>
<tr>
<td>A. Family Caulimoviridae</td>
<td>27</td>
</tr>
<tr>
<td>B. Family Geminiviridae</td>
<td>28</td>
</tr>
<tr>
<td>C. Family Circoviridae</td>
<td>28</td>
</tr>
<tr>
<td>D. Family Reoviridae</td>
<td>29</td>
</tr>
<tr>
<td>E. Family Partitiviridae</td>
<td>29</td>
</tr>
<tr>
<td>F. No family</td>
<td>30</td>
</tr>
<tr>
<td>G. Family Rhabdoviridae</td>
<td>30</td>
</tr>
<tr>
<td>H. Family Bunyaviridae</td>
<td>30</td>
</tr>
<tr>
<td>I. No family</td>
<td>31</td>
</tr>
<tr>
<td>J. Family Bromoviridae</td>
<td>31</td>
</tr>
<tr>
<td>K. Family Comoviridae</td>
<td>32</td>
</tr>
<tr>
<td>L. Family Potyviridae</td>
<td>33</td>
</tr>
<tr>
<td>M. Family Tombusviridae</td>
<td>33</td>
</tr>
</tbody>
</table>
C. Fine structure determination: electron microscopy 111
D. X-ray crystallographic analysis 113
E. Neutron small-angle scattering 114
F. Mass spectrometry 114
G. Serological methods 114
H. Methods for studying stabilizing bonds 116

III. Architecture of Rod-Shaped Viruses 117
A. Introduction 117
B. Tobamovirus genus 118
C. Tobravirus genus 123
D. Other helical viruses 124

IV. Assembly of Rod-Shaped Viruses 126
A. TMV 126
B. Other rod-shaped viruses 134

V. Architecture of Isometric Viruses 134
A. Introduction 134
B. Quasi-equivalence 135
C. Possible icosahedra 136
D. Clustering of subunits 137
E. ‘True’ and ‘quasi’ symmetries 138
F. Bacilliform particles 138

VI. Small Icosahedral Viruses 138
A. Subunit structure 138
B. Virion structure 139
C. The arrangement of nucleic acid within icosahedral viruses 157

VII. More Complex Isometric Viruses 159

VIII. Enveloped Viruses 160
A. Rhabdoviridae 160
B. Tospoviruses 162

IX. Assembly of Icosahedral Viruses 163
A. Bromoviruses 163
B. Alfalfa mosaic virus 165
C. Other viruses 165
D. RNA selection during assembly of plant reoviruses 167

X. Discussion and Summary 168

Chapter 6 Genome Organization 171

I. Introduction 171

II. General Properties of Plant Viral Genomes 171
A. Information content 171
B. Economy in the use of genomic nucleic acids 172
C. The functions of viral gene products 172
D. Non-coding regions 174

III. Plant Viral Genome Organization 174

IV. Double-Stranded DNA Viruses 174
A. Family Caulimoviridae 174

V. Single-Stranded DNA Viruses 180
A. Family Geminiviridae 180
B. Family Circoviridae 183

VI. Double-Stranded RNA Viruses 183
A. Family Reoviridae 183
B. Family Partitiviridae
C. Genus Varicosavirus

VII. Negative-Sense Single-Stranded RNA Genomes
A. Family Rhabdoviridae
B. Family Bunyaviridae

VIII. Positive-Sense Single-Stranded RNA Genomes
A. Family Bromoviridae
B. Family Comoviridae
C. Family Potyviridae
D. Family Tombusviridae
E. Family Sequiviridae
F. Family Closteroviridae
G. Family Luteoviridae
H. Floating genera

IX. Summary and Discussion

Chapter 7 Expression of Viral Genomes
I. Introduction
II. Virus Entry and Uncoating
A. Virus entry
B. Uncoating of TMV
C. Uncoating of bromoviruses
D. Uncoating of SBMV
E. Uncoating of TYMV
F. Discussion

III. Viral Genome Expression
A. Structure of the genome
B. Defining functional ORFs
C. Recognizing activities of viral genes
D. Matching gene activities with functional ORFs

IV. Synthesis of mRNAs
A. Negative-sense single-stranded RNA viruses
B. Double-stranded RNA viruses
C. DNA viruses

V. Plant Viral Genome Strategies
A. The eukaryotic protein-synthesizing system
B. Virus strategies to overcome eukaryotic translation constraints
C. Control of translation
D. Discussion
E. Positive-sense ssRNA viruses that have more than one strategy
F. Negative-sense single-stranded RNA viruses
G. Double-stranded RNA viruses
H. DNA viruses

VI. Discussion

Chapter 8 Virus Replication
I. Introduction
II. Host Functions Used by Plant Viruses
A. Components for virus synthesis
B. Energy
C. Protein synthesis
D. Nucleic acid synthesis
E. Viral genome strategies
CONTENTS

- E. Structural components of the cell 294

III. Methods for Studying Viral Replication 294
 A. In vivo systems 294
 B. In vitro systems 302

IV. Replication of Positive-Sense Single-Stranded RNA Viruses 304
 A. Viral templates 305
 B. Replicase 306
 C. Sites of replication 310
 D. Mechanism of replication 310
 E. Replication of brome mosaic virus 310
 F. Replication of cucumber mosaic virus 315
 G. Replication of alfalfa mosaic virus 316
 H. Replication of tobacco mosaic virus 319
 I. Replication of potyviruses 322
 J. Replication of Comoviridae 324
 K. Replication of turnip yellow mosaic virus 326
 L. Replication of other (+)-strand RNA viruses 330
 M. Discussion 333

V. Replication of Negative-Sense Single-Stranded RNA Viruses 333
 A. Plant Rhabdoviridae 333
 B. Tospoviruses 335

VI. Replication of Double-Stranded RNA Viruses 336
 A. Plant Reoviridae 336

VII. Replication of Reverse Transcribing Viruses 339
 A. Reverse transcriptase 339
 B. Replication of ‘caulimoviruses’ 340
 C. Replication of ‘badnaviruses’ 344

VIII. Replication of Single-Stranded DNA Viruses 345
 A. Methods for studying geminivirus replication 345
 B. In vivo observations on geminiviruses 345
 C. Rolling-circle replication 345
 D. Geminivirus replication 346
 E. Nanovirus replication 351

IX. Mutation and Recombination 352
 A. Mutation 352
 B. Recombination 353
 C. Defective and defective interfering nucleic acids and particles 363

X. Mixed Virus Assembly 368

XI. Discussion 371

Chapter 9 Induction of Disease 1: Virus Movement through the Plant and Effects on Plant Metabolism 373

I. Introduction 373

II. Movement and Final Distribution 373
 A. Routes by which viruses move through plants 374
 B. Methods for studying virus movement 374
 C. Transport across nuclear membranes 376
 D. Cell-to-cell movement 377
 E. Time of movement from first infected cells 396
 F. Rate of cell-to-cell movement 396
 G. Long-distance movement 397
Chapter 10: Induction of Disease 2: Virus-Plant Interactions

I. Introduction

II. Definitions and Terminology of Host Responses to Inoculation
 A. R genes

III. Steps in the Induction of Disease
 A. Ability of virus to replicate in initial cell
 B. Ability of virus to move out of first cell
 C. Hypersensitive local response
 D. HR induced by TMV in N-gene tobacco
 E. Other viral–host hypersensitive responses
 F. Host protein changes in the hypersensitive response
 G. Other biochemical changes during the hypersensitive response
 H. Systemic necrosis
 I. Programed cell death and plant viruses
 J. Local acquired resistance
 K. Systemic acquired resistance
 L. Wound healing responses
 M. Antiviral factors
 N. Ability of virus to spread through various barriers
 O. Systemic host response
 P. Development of mosaic disease
 Q. Symptom severity
 R. Recovery

IV. Inherent Host Response
 A. Gene silencing
VIII. Insects with Biting Mouthparts
- A. Vector groups and feeding habits 518
- B. Viruses transmitted by beetles 519
- C. Beetle–virus relationships 519

IX. Mites (Arachnida)
- A. Eriophyidae 520
- B. Tetranychidae 522

X. Pollinating Insects 522

XI. Nematodes (Nematoda)
- A. Criteria for demonstrating nematode transmission 523
- B. Nematode feeding 523
- C. Virus–nematode relationships 524
- D. Virus–vector molecular interactions 525

XII. Fungi
- A. *In vitro* fungal transmission 526
- B. *In vivo* fungal transmission 527

XIII. Discussion and Summary 527

Chapter 12 Transmission 2: Mechanical, Seed, Pollen and Epidemiology 533

I. Mechanical Transmission 533
- A. Source and preparation of inoculum 533
- B. Applying the inoculum 534

II. Factors Influencing the Course of Infection and Disease 535
- A. The plant being inoculated 536
- B. Development of disease 538
- C. Viral nucleic acid as inoculum 541
- D. Nature and number of infectible sites 542
- E. Number of particles required to give an infection 544
- F. Mechanical transmission in the field 545
- G. Abiotic transmission in soil 546
- H. Summary and discussion 546

III. Direct Passage in Living Higher Plant Material 546
- A. Through the seed 546
- B. By vegetative propagation 554
- C. By grafting 554
- D. By dodder 555
- E. Summary and discussion 555

IV. Ecology and Epidemiology 555
- A. Biological factors 556
- B. Physical factors 572
- C. Survival through the seasonal cycle 576
- D. Disease forecasting 577
- E. Conclusions 578

Chapter 13 New Understanding of the Functions of Plant Viruses 583

I. Introduction 583

II. Early Events 584

III. Mid-stage Events 585
- A. Host and virus translation 585
- B. Host and virus replication 585
- C. Spatial factors in virus expression and replication 586
- D. Plant viruses and cytoskeletal elements 588
Chapter 14 Viroids, Satellite Viruses and Satellite RNAs

I. Viroids
 A. Classification of viroids
 B. Pathology of viroids
 C. Structure of viroids
 D. Replication of viroids
 E. Molecular basis for biological activity
 F. Diagnostic procedures for viroids

II. Satellite Viruses and Satellite RNAs
 A. Satellite plant viruses
 B. Satellite RNAs (satRNAs)
 C. Satellite DNAs
 D. Complex-dependent viruses
 E. Discussion

Chapter 15 Methods for Assay, Detection and Diagnosis

I. Introduction

II. Methods Involving Biological Activities of the Virus
 A. Infectivity assays
 B. Indicator hosts for diagnosis
 C. Host range in diagnosis
 D. Symptom-related methods
 E. Methods of transmission in diagnosis
 F. Cytological effects for diagnosis
 G. Mixed infections
 H. Preservation of virus inoculum

III. Methods Depending on Physical Properties of the Virus Particle
 A. Stability and physicochemical properties
 B. Ultracentrifugation
 C. Electron microscopy
 D. Chemical assays for purified viruses
 E. Assay using radioisotopes

IV. Methods Depending on Properties of Viral Proteins
 A. Serological procedures
 B. Methods for detecting antibody–virus combination
 C. Collection, preparation and storage of samples
 D. Monoclonal antibodies
 E. Phage-displayed single-chain antibodies
 F. Serologically specific electron microscopy
 G. Fluorescent antibody
 H. Neutralization of infectivity
 I. Electrophoretic procedures

V. Methods Involving Properties of the Viral Nucleic Acid
 A. Type and size of nucleic acid
 B. Cleavage patterns of DNA
 C. Hybridization procedures
 D. Polymerase chain reaction

VI. Discussion and Summary
Chapter 16 Control and Uses of Plant Viruses

I. Introduction 675

II. Removal or Avoidance of Sources of Infection 676
 A. Removal of sources of infection in or near the crop 676
 B. Virus-free seed 679
 C. Virus-free vegetative stocks 680
 D. Propagation and maintenance of virus-free stocks 685
 E. Modified planting and harvesting procedures 686

III. Control or Avoidance of Vectors 690
 A. Air-borne vectors 691
 B. Soil-borne vectors 696

IV. Protecting the Plant from Systemic Disease 698
 A. Mild strain protection (cross-protection) 699
 B. Satellite-mediated protection 700
 C. Antiviral chemicals 701

V. Conventional Resistance to Plant Viruses 702
 A. Kinds of host response 702
 B. Genetics of resistance to viruses 704
 C. Tolerance 707
 D. Use of conventional resistance for control 707

VI. Transgenic Protection Against Plant Viruses 712
 A. Introduction 712
 B. Natural resistance genes 712

VII. Pathogen-Derived Resistance 713
 A. Protein-based protection 714
 B. Nucleic acid-based protection 718
 C. Other forms of transgenic protection 724
 D. Field releases of transgenic plants 727
 E. Potential risks associated with field release of virus transgenic plants 728

VIII. Discussion and Conclusions 730

IX. Possible Uses of Viruses for Gene Technology 731
 A. Viruses as gene vectors 731
 B. Viruses as sources of control elements for transgenic plants 735
 C. Viruses for presenting heterologous peptides 736
 D. Viruses in functional genomics of plants 739
 E. Summary and discussion 740

Chapter 17 Variation, Evolution and Origins of Plant Viruses 743

I. Strains of Viruses 743
 A. Quasi-species 743
 B. Virus strains 744

II. Criteria for the Recognition of Strains 744
 A. Structural criteria 744
 B. Serological criteria 750
 C. Biological criteria 757
 D. Discussion 761

III. Isolation of Strains 762
 A. Strains occurring naturally in particular hosts 762
 B. Isolation from systemically infected plants 762
 C. Selection by particular hosts or conditions of growth 762
 D. Isolation by means of vectors 763
CONTENTS

E. Isolation of artificially induced mutants 763
F. Isolation of strains by molecular cloning 764

IV. The Molecular Basis of Variation 764
A. Mutation (nucleotide changes) 764
B. Recombination 765
C. Deletions and additions 766
D. Nucleotide sequence re-arrangement 766
E. Re-assortment of multi-particle genomes 766
F. The origin of strains in nature 767

V. Constraints on Variation 767
A. Muller’s ratchet 767
B. Does Muller’s ratchet operate with plant viruses? 768

VI. Virus Strains in the Plant 768
A. Cross-protection 768
B. Selective survival in specific hosts 768
C. Loss of infectivity for one host following passage through another 769
D. Double infections in vivo 770
E. Selective multiplication under different environmental conditions 770

VII. Correlations Between Criteria for Characterizing Viruses and Virus Strains 770
A. Criteria for identity 770
B. Strains and viruses 771
C. Correlations for various criteria 771

VIII. Discussion and Summary 774

IX. Speculations on Origins and Evolution 775
X. Types of Evolution 776
A. Microevolution and macroevolution 776
B. Sequence divergence or convergence 776
C. Modular evolution 777
D. Evidence for virus evolution 777

XI. Sources of Viral Genes 791
A. Replicases 792
B. Proteinases 793
C. Coat proteins 793
D. Cell-to-cell movement proteins 793
E. Supressors of gene silencing 794

XII. Origins of Viruses, Viroids and Satellites 794
A. Origins of viruses 794
B. Origin of viroids 796
C. Origin of satellite viruses and nucleic acids 798

XIII. Selection Pressures for Evolution 799
A. Maximizing the variation 799
B. Controlling the variation 799
C. Adaptation to niches 802
D. Rates of evolution 802

XIV. Co-evolution of Viruses with their Hosts and Vectors 804
A. Co-evolution of viruses, host plants and invertebrate vectors 804
B. Evolution of angiosperms and insects 804
C. Horizontal transmission through plants of viruses infecting only insects 804
D. Affinities of viruses that replicate in both insects and plants 805
E. Adaptation of plant viruses to their present invertebrate vectors 806
XV. Discussion and Summary 807
Appendix 1A 813
Appendix 1B 838
Appendix 2A 850
Appendix 2B 852
Appendix 3 854
References 857
Index 983

Plate section appears between pages 74 and 75.