FUNDAMENTALS OF LIGHT MICROSCOPY AND ELECTRONIC IMAGING

Douglas B. Murphy
Department of Cell Biology
Johns Hopkins University School of Medicine
CONTENTS

Preface xi

1. FUNDAMENTALS OF LIGHT MICROSCOPY 1
 Overview 1
 Optical Components of the Light Microscope 1
 Note: Inverted Microscope Designs 3
 Aperture and Image Planes in a Focused, Adjusted Microscope 4
 Note: Using an Eyepiece Telescope to View the Objective Back Aperture 5
 Koehler Illumination 6
 Adjusting the Microscope for Koehler Illumination 7
 Note: Summary of Steps for Koehler Illumination 7
 Note: Focusing Oil Immersion Objectives 11
 Precautions for Handling Optical Equipment 11
 Exercise: Calibration of Magnification 12

2. LIGHT AND COLOR 15
 Overview 15
 Light as a Probe of Matter 15
 Light as Particles and Waves 18
 The Quality of Light 20
 Properties of Light Perceived by the Eye 21
 Physical Basis for Visual Perception and Color 22
 Positive and Negative Colors 24
 Exercise: Complementary Colors 26

3. ILLUMINATORS, FILTERS, AND ISOLATION OF SPECIFIC WAVELENGTHS 29
 Overview 29
 Illuminators and Their Spectra 29
Demonstration: Spectra of Common Light Sources 33
Illuminator Alignment and Bulb Replacement 34
Demonstration: Aligning a 100 W Mercury Arc Lamp in an Epi-illuminator 35
"First On—Last Off": Essential Rule for Arc Lamp Power Supplies 36
Filters for Adjusting the Intensity and Wavelength of Illumination 37
Effects of Light on Living Cells 41

4. LENSES AND GEOMETRICAL OPTICS 43
Overview 43
Image Formation by a Simple Lens 43
Note: Real and Virtual Images 45
Rules of Ray Tracing for a Simple Lens 46
Object-Image Math 46
The Principal Aberrations of Lenses 50
Designs and Specifications of Objective Lenses 53
Condensers 56
Oculars 56
Microscope Slides and Coverslips 57
The Care and Cleaning of Optics 58
Exercise: Constructing and Testing an Optical Bench Microscope 59

5. DIFFRACTION AND INTERFERENCE IN IMAGE FORMATION 61
Overview 61
Defining Diffraction and Interference 61
The Diffraction Image of a Point Source of Light 64
Demonstration: Viewing the Airy Disk with a Pinhole Aperture 66
Constancy of Optical Path Length Between the Object and the Image 68
Effect of Aperture Angle on Diffraction Spot Size 69
Diffraction by a Grating and Calculation of Its Line Spacing, d 71
Demonstration: The Diffraction Grating 75
Abbe’s Theory for Image Formation in the Microscope 77
Diffraction Pattern Formation in the Back Aperture of the Objective Lens 80
Demonstration: Observing the Diffraction Image in the Back Focal Plane of a Lens 81
Preservation of coherence: An Essential Requirement for Image Formation 82
Exercise: Diffraction by Microscope Specimens 84

6. DIFFRACTION AND SPATIAL RESOLUTION 85
Overview 85
Numerical Aperture 85
Spatial Resolution 87
Depth of Field and Depth of Focus 90
Optimizing the Microscope Image: A Compromise Between Spatial Resolution and Contrast 91
Exercise: Resolution of Striae in Diatoms 93
7. PHASE CONTRAST MICROSCOPY AND DARK-FIELD MICROSCOPY 97
Overview 97
Phase Contrast Microscopy 97
The Behavior of Waves from Phase Objects in Bright-Field Microscopy 99
The Role of Differences in Optical Path Lengths 103
The Optical Design of the Phase Contrast Microscope 103
Alignment 106
Interpretating the Phase Contrast Image 106
Exercise: Determination of the Intracellular Concentration of Hemoglobin in Erythrocytes by Phase Immersion Refractometry 110
Dark-Field Microscopy 112
Theory and Optics 112
Image Interpretation 115
Exercise: Dark-Field Microscopy 116

8. PROPERTIES OF POLARIZED LIGHT 117
Overview 117
The Generation of Polarized Light 117
Demonstration: Producing Polarized Light with a Polaroid Filter 119
Polarization by Reflection and Scattering 121
Vectorial Analysis of Polarized Light Using a Dichroic Filter 121
Double Refraction in Crystals 124
Demonstration: Double Refraction by a Calcite Crystal 126
Kinds of Birefringence 127
Propagation of O and E Wavefronts in a Birefringent Crystal 128
Birefringence in Biological Specimens 130
Generation of Elliptically Polarized Light by Birefringent Specimens 131

9. POLARIZATION MICROSCOPY 135
Overview 135
Optics of the Polarizing Microscope 136
Adjusting the Polarizing Microscope 138
Appearance of Birefringent Objects in Polarized Light 139
Principles of Action of Retardation Plates and Three Popular Compensators 139
Demonstration: Making a λ Plate from a Piece of Cellophane 143
Exercise: Determination of Molecular Organization in Biological Structures Using a Full Wave Plate Compensator 148

10. DIFFERENTIAL INTERFERENCE CONTRAST (DIC) MICROSCOPY AND MODULATION CONTRAST MICROSCOPY 153
Overview 153
The DIC Optical System 153
DIC Equipment and Optics 155
The DIC Prism 157
Demonstration: The Action of a Wollaston Prism in Polarized Light 158
CONTENTS

Formation of the DIC Image 159
Interference Between O and E Wavefronts and the Application of Bias Retardation 160
Alignment of DIC Components 161
Image Interpretation 166
The Use of Compensators in DIC Microscopy 167
Comparison of DIC and Phase Contrast Optics 168
Modulation Contrast Microscopy 168
Contrast Methods Using Oblique Illumination 169
Alignment of the Modulation Contrast Microscope 172

Exercise: DIC Microscopy 173

11. FLUORESCENCE MICROSCOPY 177

Overview 177
Applications of Fluorescence Microscopy 178
Physical Basis of Fluorescence 179
Properties of Fluorescent Dyes 182
Demonstration: Fluorescence of Chlorophyll and Fluorescein 183
Autofluorescence of Endogenous Molecules 185
Demonstration: Fluorescence of Biological Materials Under Ultraviolet Light 189
Arrangement of Filters and the Epi-illuminator in the Fluorescence Microscope 189
Objective Lenses and Spatial Resolution in Fluorescence Microscopy 194
Causes of High-Fluorescence Background 196
The Problem of Bleed-Through with Multiply Stained Specimens 197
Examining Fluorescent Molecules in Living Cells 198
Exercise: Fluorescence Microscopy of Living Tissue Culture Cells 199

12. CONFOCAL LASER SCANNING MICROSCOPY 205

Overview 205
The Optical Principle of Confocal Imaging 208
Demonstration: Isolation of Focal Plane Signals with a Confocal Pinhole 211
Advantages of CLSM Over Wide-Field Fluorescence Systems 213
Criteria Defining Image Quality and the Performance of an Electronic Imaging System 215
Electronic Adjustments and Considerations for Confocal Fluorescence Imaging 217
Photobleaching 223
General Procedure for Acquiring a Confocal Image 224
Two-Photon and Multi-Photon Laser Scanning Microscopy 226
Confocal Imaging with a Spinning Nipkow Disk 229
Exercise: Effect of Confocal Variables on Image Quality 230

13. VIDEO MICROSCOPY 233

Overview 233
Applications and Specimens Suitable for Video 233
14. DIGITAL CCD MICROSCOPY

Overview 259
The Charge-Coupled Device (CCD Imager) 260
CCD Architectures 267
Note: Interline CCDs for Biomedical Imaging 268
Analogue and Digital CCD Cameras 269
Camera Acquisition Parameters Affecting CCD Readout
and Image Quality 269
Imaging Performance of a CCD Detector 271
Benefits of Digital CCD Cameras 276
Requirements and Demands of Digital CCD Imaging 276
Color Cameras 277
Points to Consider When Choosing a Camera 278
Exercise: Evaluating the Performance of a CCD Camera 279

15. DIGITAL IMAGE PROCESSING

Overview 283
Preliminaries: Image Display and Data Types 284
Histogram Adjustment 285
Adjusting Gamma (γ) to Create Exponential LUTs 287
Flat-Field Correction 289
Image Processing with Filters 292
Signal-to-Noise Ratio 299
Exercise: Flat-Field Correction and Determination of S/N Ratio 305

16. IMAGE PROCESSING FOR SCIENTIFIC PUBLICATION

Overview 307
Image Processing: One Variable Out of Many Affecting the Appearance
of the Microscope Image 307
The Need for Image Processing 309
Varying Processing Standards 309
Record Keeping During Image Acquisition and Processing 310
Note: Guidelines for Image Acquisition and Processing 310
Use of Color in Prints and Image Displays 312
Colocalization of Two Signals Using Pseudocolor 313
A Checklist for Evaluating Image Quality 315

Appendix I 317
Appendix II 321
Appendix III 329
Glossary 331
References 357
Index 361