Martin Golubitsky
Ian Stewart
The Symmetry Perspective
From Equilibrium to Chaos in Phase Space and Physical Space

Birkhäuser Verlag
Basel • Boston • Berlin
Contents

Preface xi

Chapter 1. Steady-State Bifurcation 1
 1.1. Two Examples 3
 1.2. Symmetries of Differential Equations 6
 1.3. Liapunov-Schmidt Reduction 16
 1.4. The Equivariant Branching Lemma 17
 1.5. Application to Speciation 20
 1.6. Observational Evidence 25
 1.7. Modeling Issues: Imperfect Symmetry 27
 1.8. Generalization to Partial Differential Equations 29

Chapter 2. Linear Stability 33
 2.1. Symmetry of the Jacobian 37
 2.2. Isotypic Components 37
 2.3. General Comments on Stability of Equilibria 38
 2.4. Hilbert Bases and Equivariant Mappings 41
 2.5. Model-Independent Results for D_3 Steady-State Bifurcation 45
 2.6. Invariant Theory for S_N 46
 2.7. Cubic Terms in the Speciation Model 48
 2.8. Steady-State Bifurcations in Reaction-Diffusion Systems 54

Chapter 3. Time Periodicity and Spatio-Temporal Symmetry 59
 3.1. Animal Gaits and Space-Time Symmetries 59
 3.2. Symmetries of Periodic Solutions 61
 3.3. A Characterization of Possible Spatio-Temporal Symmetries 65
 3.4. Rings of Cells 68
 3.5. An Eight-Cell Locomotor CPG Model 72
 3.6. Multifrequency Oscillations 78
 3.7. A General Definition of a Coupled Cell Network 83

Chapter 4. Hopf Bifurcation with Symmetry 87
 4.1. Linear Analysis 89
 4.2. The Equivariant Hopf Theorem 91
 4.3. Poincaré-Birkhoff Normal Form 95
 4.4. $O(2)$ Phase-Amplitude Equations 97
 4.5. Traveling Waves and Standing Waves 98
 4.6. Spiral Waves and Target Patterns 100
Contents

4.7. O(2) Hopf Bifurcation in Reaction-Diffusion Equations 105
4.8. Hopf Bifurcation in Coupled Cell Networks 110
4.9. Dynamic Symmetries Associated to Bifurcation 116

Chapter 5. Steady-State Bifurcations in Euclidean Equivariant Systems 123
5.1. Translation Symmetry, Rotation Symmetry, and Dispersion Curves 126
5.2. Lattices, Dual Lattices, and Fourier Series 128
5.3. Actions on Kernels and Axial Subgroups 132
5.4. Reaction-Diffusion Systems 135
5.5. Pseudoscalar Equations 138
5.6. The Primary Visual Cortex 141
5.7. The Planar Bénard Experiment 148
5.8. Liquid Crystals 149
5.9. Pattern Selection: Stability of Planforms 154

Chapter 6. Bifurcation From Group Orbits 161
6.1. The Couette-Taylor Experiment 165
6.2. Bifurcations From Group Orbits of Equilibria 171
6.3. Relative Periodic Orbits 176
6.4. Hopf Bifurcation from Rotating Waves to Quasiperiodic Motion 184
6.5. Modulated Waves in Circular Domains 187
6.6. Spatial Patterns 189
6.7. Meandering of Spiral Waves 192

Chapter 7. Hidden Symmetry and Genericity 201
7.1. The Faraday Experiment 202
7.2. Hidden Symmetry in PDEs 204
7.3. The Faraday Experiment Revisited 209
7.4. Mode Interactions and Higher-Dimensional Domains 209
7.5. Lapwood Convection 211
7.6. Hemispherical Domains 216

Chapter 8. Heteroclinic Cycles 221
8.1. The Guckenheimer-Holmes Example 222
8.2. Heteroclinic Cycles by Group Theory 225
8.3. Pipe Systems and Bursting 227
8.4. Cycling Chaos 237

Chapter 9. Symmetric Chaos 241
9.1. Admissible Subgroups 246
9.2. Invariant Measures and Ergodic Theory 254
9.3. Detectives 257
9.4. Instantaneous and Average Symmetries, and Patterns on Average 267
9.5. Synchrony of Chaotic Oscillations and Bubbling Bifurcations 268