Contents

Preface xi

List of Contributors xiii

1 Introduction 1

Banafshé Larijani, Colin A. Rosser and Rudiger Woscholski
1.1 Chemical biology – the present 1
1.2 Chemical biology – the past 2
1.3 Chemical biology – the future 3
1.4 Chemical biology – mind the interdisciplinary gap 4
1.5 An introduction to the following chapters 5
1.5.1 Cryo-electron microscopy 5
1.5.2 Atomic force microscopy 5
1.5.3 Differential scanning calorimetry in the study of lipid structures 6
1.5.4 Membrane potentials and membrane probes 6
1.5.5 Identification and quantification of lipids using mass spectroscopy 7
1.5.6 Liquid-state NMR 7
1.5.7 Solid-state NMR in biomembranes 7
1.5.8 Molecular dynamics 8
1.5.9 Two-dimensional infrared studies of biomolecules 8
1.5.10 Biological applications of single and two-photon fluorescence 8
1.5.11 Optical tweezers 9
1.5.12 PET imaging in chemical biology 9
1.5.13 Chemical genetics 9

2 Cryomicroscopy 11

Frank Booy and Elena Orlova
2.1 The need for (electron) microscopy 11
2.2 Development of cryomicroscopy 11
2.3 Sample–electron interaction 13
2.4 Contrast in negatively stained and cryo preparations 14
2.5 Image formation 16
2.6 Image analysis 16
2.7 Software used in the analysis of electron micrographs 19
3 Atomic force microscopy: applications in biology

James Moody and Stephanie Allen

3.1 A brief history of microscopy
3.2 The scanning probe microscope revolution
 3.2.1 The stylus profiler
 3.2.2 The scanning tunnelling microscope
 3.2.3 The atomic force microscope
3.3 The workings of an AFM instrument
 3.3.1 The imaging probe
 3.3.2 The piezoelectric scanner
 3.3.3 The deflection detection system
 3.3.4 The electronic feedback system
3.4 Imaging biological molecules with force
 3.4.1 Contact mode
 3.4.2 Oscillating cantilever imaging modes
 3.4.3 Imaging in liquid
3.5 Factors influencing image quality
 3.5.1 Sample preparation and immobilization
 3.5.2 Tip convolution/broadening
 3.5.3 Double tipping
 3.5.4 Sample roughness
 3.5.5 Temperature variation and vibration isolation
3.6 Biological applications of AFM and recent developments
 3.6.1 Imaging dynamic processes
 3.6.2 Measuring biomolecular forces
3.7 Conclusions and future directions

4 Differential scanning calorimetry in the study of lipid structures

Félix M. Goñi and Alicia Alonso

4.1 Introduction
4.2 Membranes, lipids and lipid phases
4.3 Heat exchanges and calorimetry
 4.3.1 Heat and related entities
 4.3.2 Differential scanning calorimetry
4.4 Phase transitions in pure lipid–water systems
 4.4.1 Gel (L_p) to rippled (P_r) phase transition (the ‘pre-transition’) 4.4.2 Rippled (P_r) to liquid-crystalline (L_a) phase transition
 4.4.3 Gel (L_p) to liquid-crystalline (L_a) phase transition
 4.4.4 Lamellar (L_a) to inverted hexagonal (HII) phase transition
4.5 Selected examples of transitions in lipid mixtures
 4.5.1 Phospholipid–cholesterol mixtures
 4.5.2 Lamellar-to-inverted hexagonal transitions
4.6 Complex systems: lipid–protein mixtures and cell membranes
5 Membrane potentials and membrane probes

Paul O'Shea

5.1 Introduction: biological membranes; structure and electrical properties
5.2 Phospholipid membranes as molecular environments
5.3 The physical origins of the transmembrane (V_m or Δψ) surface (ϕ_S) and dipolar (ϕ_D) membrane potentials
5.3.1 The transmembrane potential difference (V_m or Δψ)
5.3.2 The membrane surface potential (ϕ_S)
5.3.3 The membrane dipole potential (ϕ_D)
5.4 Measurement of membrane potentials
5.4.1 Electrodes
5.4.2 Spectroscopic measurements of the transmembrane potential difference
5.4.3 Spectroscopic measurements of the membrane surface potential
5.4.4 Spectroscopic measurements of the membrane dipole potential
5.5 Problems with spectroscopic measurements of membrane potentials
5.6 Spatial imaging of membrane potentials

6 Identification and quantification of lipids using mass spectrometry

Trevor R. Pettit and Michael J. O. Wakelam

6.1 Introduction
6.2 Lipid analysis by mass spectrometry
6.2.1 HPLC-ESI-MS
6.2.2 Tandem mass spectrometry
6.3 Conclusion

7 Liquid-state NMR

Charlie Dickinson

7.1 Introduction
7.2 How NMR works: the basics
7.3 Some NMR applications in biology
7.3.1 In vivo cell metabolism made 'visible' by NMR
7.3.2 In vivo phosphorus and nitrogen metabolism
7.3.3 Identification and quantification of small quantities in a complex mixture by 2D 1H–31P-HMQC-TOCSY NMR
7.3.4 Simultaneous separation and identification of very complex mixtures: LC-NMR
7.3.5 Three-dimensional molecular structures in solution
7.4 Conclusion

8 Solid-state NMR in biomembranes

Erick J. Dufourc

8.1 Introduction
8.2 NMR basics for membrane systems
8.2.1 Anisotropy of NMR interactions in membranes
8.2.2 Spectra and the effect of motional averages
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.3 A special case of motional averaging: magic angle sample spinning</td>
<td>118</td>
</tr>
<tr>
<td>8.2.4 Relaxations times: measuring dynamics</td>
<td>118</td>
</tr>
<tr>
<td>8.3 Applications of wide-line NMR to membrane systems</td>
<td>119</td>
</tr>
<tr>
<td>8.3.1 Lipid phases: diagrams, peptide-induced fusion-fragmentation</td>
<td>120</td>
</tr>
<tr>
<td>8.3.2 Bilayer internal dynamics: order parameters, membrane thickness,</td>
<td>121</td>
</tr>
<tr>
<td>sterols</td>
<td></td>
</tr>
<tr>
<td>8.3.3 Orientation of molecules (sterols, helical peptides) in membranes</td>
<td>124</td>
</tr>
<tr>
<td>8.3.4 Membrane dynamics from picoseconds to milliseconds</td>
<td>124</td>
</tr>
<tr>
<td>8.4 Applications of MAS to biomembranes and natural colloids</td>
<td>126</td>
</tr>
<tr>
<td>8.4.1 Three-dimensional structure of peptides in membranes</td>
<td>126</td>
</tr>
<tr>
<td>8.4.2 Three-dimensional structure of wine tannin–salivary protein</td>
<td>128</td>
</tr>
<tr>
<td>colloid complexes</td>
<td></td>
</tr>
<tr>
<td>8.4.3 Distance determination using MAS recoupling techniques</td>
<td>128</td>
</tr>
<tr>
<td>8.5 Conclusion</td>
<td>128</td>
</tr>
<tr>
<td>9 Molecular dynamics</td>
<td>133</td>
</tr>
<tr>
<td>Michel Laguerre</td>
<td></td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>133</td>
</tr>
<tr>
<td>9.2 The basis of molecular mechanics</td>
<td>133</td>
</tr>
<tr>
<td>9.2.1 Force fields</td>
<td>134</td>
</tr>
<tr>
<td>9.2.2 The energy problem</td>
<td>135</td>
</tr>
<tr>
<td>9.3 The basis of molecular dynamics</td>
<td>137</td>
</tr>
<tr>
<td>9.3.1 Influence of temperature</td>
<td>138</td>
</tr>
<tr>
<td>9.4 Factors affecting the length of simulations</td>
<td>139</td>
</tr>
<tr>
<td>9.5 Problems caused by solvents</td>
<td>140</td>
</tr>
<tr>
<td>9.6 How to build a lipid bilayer for simulation purposes</td>
<td>142</td>
</tr>
<tr>
<td>9.7 Special case of membrane proteins</td>
<td>146</td>
</tr>
<tr>
<td>9.8 Summary</td>
<td>149</td>
</tr>
<tr>
<td>10 Two-dimensional infrared studies of biomolecules</td>
<td>151</td>
</tr>
<tr>
<td>Xabier Coto, Ibón Iloro and José Luis R. Arrondo</td>
<td></td>
</tr>
<tr>
<td>10.1 Introduction</td>
<td>151</td>
</tr>
<tr>
<td>10.2 Description of the technique</td>
<td>152</td>
</tr>
<tr>
<td>10.3 Spectral simulations</td>
<td>152</td>
</tr>
<tr>
<td>10.3.1 Intensity changes</td>
<td>154</td>
</tr>
<tr>
<td>10.3.2 Band shifting</td>
<td>156</td>
</tr>
<tr>
<td>10.3.3 Bandwidth</td>
<td>157</td>
</tr>
<tr>
<td>10.4 Two-dimensional studies of human lipoproteins</td>
<td>158</td>
</tr>
<tr>
<td>10.5 Summary</td>
<td>161</td>
</tr>
<tr>
<td>11 Biological applications of single- and two-photon fluorescence</td>
<td>163</td>
</tr>
<tr>
<td>Banafshe Larijani and Angus Bain</td>
<td></td>
</tr>
<tr>
<td>11.1 Introduction</td>
<td>163</td>
</tr>
<tr>
<td>11.2 Basic principles of fluorescence</td>
<td>163</td>
</tr>
<tr>
<td>11.3 Main principles of RET via single-photon excitation</td>
<td>164</td>
</tr>
<tr>
<td>11.4 Detection of RET</td>
<td>165</td>
</tr>
<tr>
<td>11.4.1 Steady-state method</td>
<td>165</td>
</tr>
<tr>
<td>11.4.2 Time-resolved method</td>
<td>166</td>
</tr>
<tr>
<td>11.5 Biological examples of RET monitored by frequency-domain FLIM</td>
<td>168</td>
</tr>
<tr>
<td>11.6 Two-photon fluorescence</td>
<td>171</td>
</tr>
<tr>
<td>11.6.1 Basic concepts</td>
<td>171</td>
</tr>
</tbody>
</table>
12 Optical tweezers
Christopher Batters and Justin E. Molloy

12.1 Introduction
12.1.1 History of optical tweezers
12.1.2 Single-molecule studies

12.2 Theoretical background

12.3 Apparatus
12.3.1 Building an optical tweezers transducer
12.3.2 Creating multiple laser traps: acousto-optical deflectors
12.3.3 Camera and light path

12.4 Data collection and analysis
12.4.1 Collecting data with an optical tweezer
12.4.2 Calibration of the detectors and of the optical tweezer stiffness
12.4.3 Stokes calibration
12.4.4 Equipartition principle

12.5 A biological application
12.5.1 Studying acto-myosin interactions
12.5.2 Identification of events and data analysis
12.5.3 Measuring the powerstroke
12.5.4 Lifetime analysis

12.6 Other biological examples

12.7 Summary

13 PET imaging in chemical biology
Ramón Vilar

13.1 Introduction

13.2 Positron emission tomography: principles and instrumentation

13.3 Applications of PET imaging in the biomedical sciences
13.3.1 A labelled glucose analogue: an indirect probe to measure energy metabolism
13.3.2 Imaging dopamine metabolism with PET
13.3.3 PET imaging in gene expression
13.3.4 Molecular imaging in drug discovery and development

13.4 Conclusions and outlook

14 Chemical genetics
Piers Gaffney

14.1 Introduction
14.2 Why chemicals? 232
14.3 Chemical genetics – why now? 233
14.4 The relationship between classical genetics and chemical genetics 234
14.5 Forward chemical genetics 235
 14.5.1 Obtain a compound library 236
 14.5.2 Screening 242
 14.5.3 Target identification 244
14.6 Reverse chemical genetics 245
14.7 Closing remarks 247

Index 249