Contents

1 Introductory background 1
1.1 Assumptions and definitions 2
 1.1.1 Basic properties of functions of a real variable 2
 1.1.2 Basic linear algebra 4
 1.1.3 Basic assumptions about Sturm–Liouville problems 4
1.2 Where Sturm–Liouville problems come from 6
 1.2.1 A simple physical example 6
 1.2.2 Further examples of Sturm–Liouville problems 12
1.3 Summary 18

2 Elementary theory of the classical SLP 19
2.1 Existence, uniqueness, linearity 19
2.2 Self-adjointness 21
2.3 Comparison, perturbation and conditioning theorems 26
2.4 Dependence on parameters 28
 2.4.1 Parameters in the coefficient functions 28
 2.4.2 Dependence on the BCs and endpoints 30
2.5 Standard transformations 33
 2.5.1 Transformation to SLDE with same eigenvalues 33
 2.5.2 Transformation to SLDE with related eigenvalues 34
 2.5.3 Reduction of SLDE to nonlinear first-order equation 35
2.6 Qualitative behaviour of Sturm–Liouville problems 40
 2.6.1 The JWKB approximation 40
 2.6.2 Amplitude 42
 2.6.3 Estimating eigenvalues I 42
 2.6.4 Estimating eigenvalues II 43
 2.6.5 Estimating eigenvalues III 45
2.7 Summary 51
Contents

3 Simple matrix methods

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Liouville form, BCs $u = 0$ at ends</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>3.1.1 Method A. Simple centred differences</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>3.1.2 Method B. Numerov's method</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>3.1.3 Extrapolation</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>3.1.4 Correction methods</td>
<td>60</td>
</tr>
<tr>
<td>3.2</td>
<td>Liouville form, general regular BCs</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>3.2.1 Simple differences and Numerov</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>3.2.2 Extrapolation, general BCs</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>3.2.3 Correction methods, general BCs</td>
<td>64</td>
</tr>
<tr>
<td>3.3</td>
<td>Sturm–Liouville problems not in Liouville normal form</td>
<td>68</td>
</tr>
<tr>
<td>3.4</td>
<td>Algorithms for tridiagonal matrix eigenvalues</td>
<td>69</td>
</tr>
<tr>
<td>3.5</td>
<td>Convergence theory</td>
<td>72</td>
</tr>
<tr>
<td>3.6</td>
<td>Summary</td>
<td>74</td>
</tr>
</tbody>
</table>

4 Variational methods

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introductory theory</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>4.1.1 The variational principle</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>4.1.2 Using a finite element basis</td>
<td>79</td>
</tr>
<tr>
<td>4.2</td>
<td>Convergence theory and convergence improvement</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>4.2.1 Extrapolation and correction</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>4.2.2 Numerical example</td>
<td>83</td>
</tr>
<tr>
<td>4.3</td>
<td>Perturbation of a problem with known eigenfunctions</td>
<td>84</td>
</tr>
<tr>
<td>4.4</td>
<td>Summary</td>
<td>87</td>
</tr>
</tbody>
</table>

5 Shooting and the scaled Prüfer method

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Basic idea</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>5.1.1 Improvements</td>
<td>88</td>
</tr>
<tr>
<td>5.2</td>
<td>Prüfer-based shooting methods</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>5.2.1 The scaled Prüfer equations</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>5.2.2 Scaled Prüfer miss-distance and shooting method</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>5.2.3 The normalized eigenfunction</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>5.2.4 Rescaling at jumps in S</td>
<td>99</td>
</tr>
<tr>
<td>5.3</td>
<td>Implementation of scaled Prüfer algorithms</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>5.3.1 Choice of scaling function</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>5.3.2 Exponential growth</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>5.3.3 Choice of matching point</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>5.3.4 Eigenvalue error estimation and control</td>
<td>108</td>
</tr>
<tr>
<td>5.4</td>
<td>Summary</td>
<td>112</td>
</tr>
</tbody>
</table>

5.4 Summary | 115 |
Contents

6 Pruess methods
- 6.1 Convergence theory
 - 6.1.1 Basic convergence results
 - 6.1.2 Using extrapolation
- 6.2 Advantages of Pruess methods
- 6.3 Numerical methods for the approximating problem
 - 6.3.1 Advancing a step
 - 6.3.2 Normalizing the solution
 - 6.3.3 Error estimation and mesh selection
- 6.4 Summary

7 Singular SLPs: theory
- 7.1 Singular problems
 - 7.1.1 Admissible functions
 - 7.1.2 The spectrum
 - 7.1.3 Classifying the spectrum
- 7.2 Classification of singular endpoints
 - 7.2.1 Limit-point and limit-circle endpoints
 - 7.2.2 Form of boundary conditions for limit-circle problems
 - 7.2.3 Oscillatory and nonoscillatory behaviour
- 7.3 Subdominance and the Friedrichs extension
 - 7.3.1 Large and small solutions at an endpoint
 - 7.3.2 LP case: genuine and pseudo-eigenfunctions
 - 7.3.3 LC case: the Friedrichs extension
- 7.4 Convergence of truncated eigenvalue estimates
 - 7.4.1 Theorems about convergence
 - 7.4.2 Estimating the rate of convergence
- 7.5 Summary

8 Singular SLPs: numerical treatment
- 8.1 Methods implemented in current software
- 8.2 The Fulton–Pruess endpoint classification algorithm
- 8.3 About the numerical experiments
- 8.4 Comparisons of numerics with theory
 - 8.4.1 Test: convergence using truncated BC $u = 0$
 - 8.4.2 Test: non-Friedrichs boundary conditions
- 8.5 Tests of heuristics and performance
 - 8.5.1 Choice of truncated interval
 - 8.5.2 Infinite wells
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5.3</td>
<td>Performance comparisons</td>
<td>194</td>
</tr>
<tr>
<td>8.6</td>
<td>Summary</td>
<td>197</td>
</tr>
<tr>
<td>9</td>
<td>Computing and manipulating eigenfunctions</td>
<td>198</td>
</tr>
<tr>
<td>9.1</td>
<td>Perturbation theory</td>
<td>199</td>
</tr>
<tr>
<td>9.2</td>
<td>Convergence theory</td>
<td>203</td>
</tr>
<tr>
<td>9.3</td>
<td>Eigenfunctions: algorithmic issues</td>
<td>208</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Exponential growth</td>
<td>208</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Computing small tails</td>
<td>211</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Eigenfunction error estimation</td>
<td>212</td>
</tr>
<tr>
<td>9.4</td>
<td>Presenting eigenfunctions to the user</td>
<td>216</td>
</tr>
<tr>
<td>9.5</td>
<td>Summary</td>
<td>218</td>
</tr>
<tr>
<td>10</td>
<td>The computation of resonances</td>
<td>219</td>
</tr>
<tr>
<td>10.1</td>
<td>Notation and informal description</td>
<td>220</td>
</tr>
<tr>
<td>10.2</td>
<td>Theory of the time delay</td>
<td>224</td>
</tr>
<tr>
<td>10.3</td>
<td>Theory of the methods used</td>
<td>226</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Bracketing the resonance</td>
<td>226</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Iteration to find bracketing interval</td>
<td>227</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Asymptotic correction of $\tau(\lambda)$</td>
<td>230</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Computation of r_∞</td>
<td>232</td>
</tr>
<tr>
<td>10.3.5</td>
<td>Interpolation between λ_- and λ_+</td>
<td>233</td>
</tr>
<tr>
<td>10.4</td>
<td>An implementation</td>
<td>234</td>
</tr>
<tr>
<td>10.5</td>
<td>Numerical results and comparisons</td>
<td>235</td>
</tr>
<tr>
<td>10.6</td>
<td>Summary</td>
<td>241</td>
</tr>
<tr>
<td>11</td>
<td>Further topics</td>
<td>242</td>
</tr>
<tr>
<td>11.1</td>
<td>‘Other’ methods for the SLP</td>
<td>243</td>
</tr>
<tr>
<td>11.2</td>
<td>Exploiting parallelism</td>
<td>247</td>
</tr>
<tr>
<td>11.3</td>
<td>Rigorous bounds and validated computations</td>
<td>249</td>
</tr>
<tr>
<td>11.3.1</td>
<td>The bounds game</td>
<td>249</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Two-sided bounds by Rayleigh–Ritz</td>
<td>251</td>
</tr>
<tr>
<td>11.4</td>
<td>Close eigenvalue separation estimates</td>
<td>253</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Simon’s theory</td>
<td>253</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Practical estimates</td>
<td>258</td>
</tr>
<tr>
<td>11.5</td>
<td>Non-separated boundary conditions</td>
<td>260</td>
</tr>
<tr>
<td>11.6</td>
<td>Problems with more general λ-dependence</td>
<td>262</td>
</tr>
<tr>
<td>11.7</td>
<td>Multiparameter eigenproblems</td>
<td>265</td>
</tr>
<tr>
<td>11.8</td>
<td>Vector Sturm–Liouville problems</td>
<td>267</td>
</tr>
</tbody>
</table>
11.9 Computation of the Weyl $m(\lambda)$ function 270
11.10 Computation of the spectral density function 271
11.11 Summary 274

12 Conclusion 275

A Eigenvalues of Paine problems 278

B List of test problems 279
B.1 Notes to the problems 280
B.2 The problem set 281
B.3 Specification of Benchmark 296

C Available Sturm–Liouville software 297

Index 315