Contents

Preface xi
List of contributors xv

1 Solving large-scale linear problems in solid and structural mechanics 1
 M. Papadrakakis
 1.1 Introduction 1
 1.2 Iterative equation solving 2
 1.3 Global preconditioners 7
 1.4 Element-based preconditioners 10
 1.5 Domain decomposition-based preconditioners 21
 1.6 Performance of the methods under finite precision arithmetic 26
 1.7 Concluding remarks 30
 Acknowledgements 32
 Bibliography 32

2 Solving large linearized systems in mechanics 39
 B. Nour-Omid
 2.1 Introduction 39
 2.2 Lanczos algorithm 43
 2.3 Conjugate gradient algorithm 45
 2.4 Loss of orthogonality 47
 2.5 Element-by-element preconditioning 49
 2.6 Substructure by substructure preconditioning 51
 2.7 Numerical examples 54
 2.8 Conclusions 62
 Acknowledgements 62
 Bibliography 62

3 Adaptive iterative solvers in finite elements 65
 J. Mandel
 3.1 Introduction 65
 3.2 Development of robust iterative solvers 66
 3.3 Adaptive solver for the p-version FEM in three dimensions 70
 3.4 Computational results 76
 3.5 Discussion and directions for future research 81
4 Solution of large boundary element equations
J. H. Kane and K. G. Prasad
4.1 Essentials of multi-zone boundary element analysis
4.2 Equation solving in BEA
4.3 Numerical results
4.4 Conclusions
 Acknowledgements
 Bibliography

5 Solution of large eigenvalue problems
G. Gambolati
5.1 Introduction
5.2 Eigenproblems in engineering
5.3 Optimization of Rayleigh quotients by accelerated conjugate gradients
5.4 Preconditioning
5.5 Lanczos method
5.6 Numerical results
5.7 Conclusion
 Acknowledgements
 Bibliography

6 Lanczos eigensolution method for high-performance computers
S. W. Bostic
6.1 Introduction
6.2 Application to structural problems
6.3 Lanczos method
6.4 Computational analysis
6.5 Implementation of the Lanczos method
6.6 Applications
6.7 Summary
 Bibliography

7 Solving large-scale non-linear problems in solid and structural mechanics
M. Papadrakakis
7.1 Introduction
7.2 Explicit methods
7.3 Implicit methods
7.4 Tracing equilibrium paths
7.5 The line search
7.6 Numerical examples
7.7 Concluding remarks
 Acknowledgements
 Bibliography
12 Methods for optimization of large-scale systems

J. S. Arora

12.1 Introduction 391
12.2 Design optimization model 391
12.3 Basic concepts related to numerical algorithms 394
12.4 Linearization of the problem 399
12.5 Methods based on linear approximations 399
12.6 Sequential quadratic programming: quasi-Newton methods 410
12.7 Numerical implementation aspects 417
12.8 Applications of optimization techniques 418
12.9 Practical design optimization: structural design with finite elements 418
12.10 Optimization of large systems 422
12.11 Concluding remarks
Bibliography 425

13 Automatic generation of finite element models

M. S. Shephard

13.1 Introduction 431
13.2 Definition of a valid finite element mesh 432
13.3 Key components/issues in automatic mesh generation 437
13.4 Octree mesh generators 442
13.5 Delaunay, advancing front (paving), and medial (symmetric) axis transformation mesh generators 447
13.6 Integration of automatic mesh generation with geometric modelling 451
13.7 Efficient parallel solution of automatically generated adaptive meshes 453
Acknowledgements 458
Bibliography 458

Author Index 461

Subject index 467