Contents

Preface xi

Glossary of Terms xvii

Part I. Biological Effects of Exposure to Hazardous Substances

Introduction 3

1. How Hazardous Substances Enter the Body
 What is a substance hazardous to health? 6
 Portals of entry to the body 12
 Getting through the respiratory tract 17
 Absorption of inhaled gases and vapours 18
 Deposition, retention and clearance of inhaled aerosols 22
 Ingestion of foreign substances 27
 Absorption through exposure of the skin 27

2. Diseases from Hazardous Substances
 Cancer 33
 The respiratory system 35
 Lung diseases from hazardous substances 39
 Skin complaints—the visible marks of occupation 45
 Blood diseases caused by exposure to certain substances 48
 Liver disorder of occupational origin 49
 The kidneys may be the target organ 50
 Nervous system 50
 Effects on reproduction 52

3. Understanding Thresholds
 Reaction within the body of an individual employee 59
 Reactions in a defined population 66
 Common pitfalls 71
Contents

Zero risk 73
Thresholds of cancer induction 74

4. Washout Curves—Toxico-kinetic data on hazardous substances
 Rate of accumulation and elimination 80
 Biotransformation 83
 Body burden matters 84
 Single compartment models 86
 Haber's rule? 94
 Temporal fluctuations 98
 Moving averages 100
 Real models 102
 Models with two compartments 105
 Models with three or more compartments 116

Part II. Occupational Exposure Limits

Introduction 123

5. Published Exposure Limits
 Units of concentration 128
 Reference period 129
 Time weighted averages 129
 Lists of limits 133
 Carcinogens 137
 Skin protection 137
 Documentation 138
 Possible limitations of the process 139

6. Guiding Concepts for Setting Exposure Limits—
 Human Experience
 Good health can be bought 147
 Significant risk 148
 Exposure limits by epidemiology 149
 Exposure-response curves for employees 153
 Human volunteer studies 159
 Setting limits for therapeutic agents 160
 Physical/chemical analogy 161
 Generic limits 163
 The dermal factor 164

7. Guiding Concepts for Setting Exposure Limits—
 Animal Experiments
 Extrapolating from comprehensive animal toxicology 170
8. Everything is a Mixture

Composition of bulk material as compared with air contamination 188
Mixtures with additive effects 189
Mixtures with independent effects 193
Mixtures with additive and independent effects 200
Sequential mixtures 201
Trivial constituents 206
Complex mixtures 207
Synergistic and antagonistic substances 208

9. Nobody Works Eight Hours

Lifetime maximum body burden 215
Brief exposure—for much shorter than 8 hours 216
Random excursions from the running mean 220
Systematic or cyclic variations in exposure 221
Extraordinary work schedules 222

Part III. Assessment of Health Risks

Introduction 237

10. Assessment Procedures

Identification of sources 241
Occupational exposure limits 243
Work place inspections for health risks 243
Representative employees from similar exposure groups 245
The demography of exposure 248
Medicals 251

11. Apparatus for Measuring Atmospheric Exposure

On-the-spot methods 255
Grab sampling 264
Continuous sampling methods 267
Air inlet 268
Aerosol pre-selector 270
Gas vapour absorber 274
Diffusive samplers 277
Aerosol separator 279
Air flow meter 283
Flow control 284
Pump 285
Power supply 285
Instrument performance parameters 286
12. Measuring Exposure at Work

What is the intensity and duration of exposure? 298
Personal and area atmospheric sampling 299
Variation from time to time over a work-shift 301
Coping with extreme values lasting momentarily 303
Sampling from defined job-exposure groups 304
Time at work 305
Presentation of results 307
Biological exposure indices 308
Dermal exposure 312
Investigation of exposure sources 313

13. Health Risk Surveillance

Inspection of engineering controls 318
Regular examination of ventilation systems 320
Supervision of personnel controls 322
Atmospheric exposure monitoring 323
Biological monitoring 328
Medical surveillance 331

14. Managing the Issues

A systems approach 338
Managing change 339
Negative feedback 341
Communication 342
Information 343
Write it up 344
Hazard data sheets 346
Worked example of health risk assessment and control system 347
Re-assessments and review of controls 352
So you want to be an assessor 353

Part IV. Getting Control over Health Risks

Introduction 359

15. Physical Environment Control

Substitution of a hazardous substance by a less hazardous one 363
Modifications to premises, processes and plant 365
Segregation of processes and plant 367
Enclosure 367
Ventilation systems 369
Air cleaning 373
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fans</td>
<td>382</td>
</tr>
<tr>
<td>Make-up air</td>
<td>385</td>
</tr>
<tr>
<td>16. Ventilation Basics</td>
<td></td>
</tr>
<tr>
<td>Air streams</td>
<td>389</td>
</tr>
<tr>
<td>Convective flow</td>
<td>390</td>
</tr>
<tr>
<td>Turbulent flow</td>
<td>394</td>
</tr>
<tr>
<td>Turbulent diffusion</td>
<td>395</td>
</tr>
<tr>
<td>Dilution ventilation</td>
<td>398</td>
</tr>
<tr>
<td>Minimum capture velocity</td>
<td>408</td>
</tr>
<tr>
<td>Efficiency of capture</td>
<td>409</td>
</tr>
<tr>
<td>17. Mostly about Local Exhaust Ventilation</td>
<td></td>
</tr>
<tr>
<td>Extraction through a small opening in a wall</td>
<td>416</td>
</tr>
<tr>
<td>Custom built exhaust hoods</td>
<td>420</td>
</tr>
<tr>
<td>Exhaust ventilation for gases and vapours</td>
<td>426</td>
</tr>
<tr>
<td>Exhaust ventilation for dust and fumes</td>
<td>429</td>
</tr>
<tr>
<td>Duct systems</td>
<td>433</td>
</tr>
<tr>
<td>Recirculation</td>
<td>434</td>
</tr>
<tr>
<td>18. Ventilation Investigations</td>
<td></td>
</tr>
<tr>
<td>Early signs of poor performance</td>
<td>438</td>
</tr>
<tr>
<td>Ventilation volume flow rate reconnaissance</td>
<td>439</td>
</tr>
<tr>
<td>Fault finding in ventilation systems</td>
<td>444</td>
</tr>
<tr>
<td>Static pressure survey</td>
<td>449</td>
</tr>
<tr>
<td>Mapping ventilation system performance</td>
<td>452</td>
</tr>
<tr>
<td>19. Personnel Control</td>
<td></td>
</tr>
<tr>
<td>Education and training</td>
<td>461</td>
</tr>
<tr>
<td>Controlling the duration of exposure</td>
<td>463</td>
</tr>
<tr>
<td>Protective clothing</td>
<td>463</td>
</tr>
<tr>
<td>Respiratory protective equipment</td>
<td>468</td>
</tr>
<tr>
<td>Maintenance and testing of respirators</td>
<td>482</td>
</tr>
<tr>
<td>Washing facilities</td>
<td>484</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
</tr>
<tr>
<td>Appendix 1. Background Mathematics</td>
<td>489</td>
</tr>
<tr>
<td>Differentiation and integration</td>
<td>489</td>
</tr>
<tr>
<td>Natural logarithms</td>
<td>490</td>
</tr>
<tr>
<td>Exponential law of growth or decay</td>
<td>490</td>
</tr>
<tr>
<td>First order linear differential equations</td>
<td>491</td>
</tr>
<tr>
<td>Second order linear differential equations</td>
<td>493</td>
</tr>
<tr>
<td>Simultaneous differential equations</td>
<td>494</td>
</tr>
<tr>
<td>The lognormal distribution</td>
<td>494</td>
</tr>
</tbody>
</table>
Appendix 2. Conversion Factors

Mass and weight 499
Volume flow rate 499
Volume and capacity 499
Area 500
Velocity 500
Length 500
Vapour equivalents of liquids 501
Conversion between mg m$^{-3}$ of gas or vapour and ppm 501
Conversion between mg m$^{-3}$ and grains per cubic foot 502
Conversion of pressure units 502
Conversion of power units 502

INDEX 503