Contents

Introduction

1 Elementary properties of single-variable polynomials
 1.1 Number of roots of a polynomial
 1.2 Some bounds on the roots
 1.3 Separation of roots
 1.4 Resultants and discriminants
 1.5 Continuity of roots
 1.6 Analyticity of simple roots and Thom’s lemma
 1.7 Liouville functions
 1.8 Thom’s lemma and Liouville extensions

2 Semi-algebraic sets
 2.1 Definitions and first examples
 2.2 The first main structure theorem
 2.3 Applications of the first main structure theorem
 2.4 The second main structure theorem
 2.5 Applications of the second main structure theorem
 2.6 Cell decomposition and triangulation of semi-algebraic sets
 2.7 Local triviality of semi-algebraic maps
 2.8 Applications of the local triviality theorem
 2.9 A rough quantitative approach to the finiteness theorem

3 Real algebraic sets
 3.1 Basic definitions and first properties
 3.2 Regular points
 3.3 Complexification
 3.4 Dimension
 3.5 Some examples involving $V, R(V), S(V)$
 3.6 Remarkable examples of real algebraic sets and regular maps
 3.7 Blowing up: gluing via regular maps
 3.8 Neighbourhoods of algebraic sets
 3.9 (Milnor-Thom) Bounds for the topology of algebraic sets
 3.10 Local topological properties of real algebraic sets
4 Complexity
- Introduction 183
- 4.1 Hovansky's theorem 184
- 4.2 Additive complexity of polynomials 194
- 4.3 Additive complexity of polynomials in several variables 200
- 4.4 Estimation of the number of connected components of a semi-agebraic set 206
- 4.5 Complexities 211
- 4.6 Some complements 214

5 Curves and surfaces in the projective space
- Introduction 231
- 5.1 Topology of the real projective space 232
- 5.2 The topology of complex curves 238
- 5.3 Plane curves: maximal curves 245
- 5.4 Plane curves: other properties 260
- 5.5 Some complements: Applications of blowing up and Brusotti's theorem 264
- 5.6 Surfaces of degree 3 in $\mathbb{R}P^3$ 275
- 5.7 Further results on the topology of smooth algebraic varieties in $\mathbb{R}P^n$ 284

A Effective calculation of subresultants
- A.1 Subresultants and sub-GCDS 291
- A.2 Subresultants and Euclid's algorithm 296

B Bezout's theorem
- 299

C Smith's theory
- 303

D On the piano-Mover's problem
- D.1 Introduction 307
- D.2 The piano-mover's problem 308
- D.3 Germs of plane curves 311
- D.4 Families of curves 317
- D.5 Applications to polynomials 320
- D.6 Applications to the piano-mover's problem 326

Index
- 333

Bibliography
- 336