Contents

Foreword to the English translation xi
From the Author xiii

<table>
<thead>
<tr>
<th>CHAPTER I. Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>§1. Some facts from the theory of functions of a real variable 1</td>
</tr>
<tr>
<td>1.1. Sets in \mathbb{R}^n</td>
</tr>
<tr>
<td>1.2. Classes of functions in \mathbb{R}^n</td>
</tr>
<tr>
<td>1.3. Differentiation of measures on the space \mathbb{R}^n. Lebesgue points of a function and points of density of a subset of \mathbb{R}^n</td>
</tr>
<tr>
<td>1.4. Approximation of integrable functions by smooth functions</td>
</tr>
</tbody>
</table>

§2. Functions with generalized derivatives	12
2.1. Definition of a function with generalized derivatives	12
2.2. Sobolev imbedding theorems	15
2.3. Tests for a function to belong to the class $W^{1}_{p,\text{loc}}(U)$	17
2.4. Transformations of functions with generalized derivatives	21
2.5. Dependence of the coefficients in the imbedding theorems on the size of the domain	24
2.6. A theorem on differentiability of $W^{1}_{p,\text{loc}}$-functions almost everywhere	25

§3. Möbius transformations	28
3.1. Motions and similarity transformations of a Euclidean space	28
3.2. Möbius transformations. Definitions	33
3.3. Möbius transformations and cross ratios. Construction of Möbius transformations	36
3.4. Möbius transformations and spheres	39
CONTENTS

3.5. The hypersphere bundle and linear representations of Möbius transformations 44

§4. Definition of a mapping with bounded distortion 53
 4.1. Orthogonal invariants of linear mappings of Euclidean spaces. A measure of nonorthogonality for a linear mapping 53
 4.2. Mappings with bounded distortion 61
 4.3. Examples of mappings with bounded distortion 63

§5. Mappings with bounded distortion on Riemannian spaces 67
 5.1. Riemannian metrics in domains in R^n 67
 5.2. Mappings with bounded distortion on Riemannian spaces 72

CHAPTER II. Main facts in the theory of mappings with bounded distortion 79

§1. Estimates of the moduli of continuity and differentiability almost everywhere of mappings with bounded distortion 79
 1.1. Some auxiliary facts 79
 1.2. An estimate of the modulus of continuity of a mapping with bounded distortion 82
 1.3. Differentiability almost everywhere of mappings with bounded distortion 83

§2. Some facts about continuous mappings on R^n 85
 2.1. The degree of a mapping 85
 2.2. The degree of a mapping and exterior differential forms 90
 2.3. Change of variables in a multiple integral 93

§3. Conformal capacity 103
 3.1. The capacity of a capacitor 103
 3.2. Sets of zero capacity 110
 3.3. The concept of a Hausdorff measure. Cartan’s lemma 114
 3.4. Capacity and Hausdorff measures 118
 3.5. Estimates of the capacity of certain capacitors 120

§4. The concept of the generalized differential of an exterior form 129
 4.1. General facts about exterior forms 129
 4.2. The concept of generalized differential of an exterior form 131
 4.3. Properties of the generalized differential of an exterior form 133
4.4. The homomorphism induced on the algebra of exterior forms by a mapping of the domain 134
4.5. Weak convergence of sequences of exterior forms 138
§5. Mappings with bounded distortion and elliptic differential equations 141
5.1. A description of a certain class of functionals of the calculus of variations 141
5.2. Variational properties of mappings with bounded distortion 144
5.3. The classes $W^1_p(U/A)$ and $\tilde{W}^1_p(U/A)$ 149
5.4. The Dirichlet problem, extremal functions, and generalized solutions of the Euler equation for functionals of the calculus of variations 158
5.5. The maximum principle for extremals of functionals of the calculus of variations 161
5.6. Harnack's inequality and its corollaries 163
5.7. The concept of the flow of a stationary function in a capacitor 164
5.8. The set of singular points of stationary functions for functionals of the calculus of variations 168
5.9. Liouville's theorem on conformal mappings in space 171
5.10. The property of quasi-invariance of conformal capacity 172
§6. Topological properties of mappings with bounded distortion 173
6.1. Continuous mappings with nonnegative Jacobian 173
6.2. Satisfaction of condition N for mappings with bounded distortion 176
6.3. Topological properties of mappings with bounded distortion 182
6.4. A theorem on removable singularities 187
6.5. On the method of moduli 188
6.6. Bi-Lipschitz mappings 190
§7. Local structure of mappings with bounded distortion 194
7.1. Preliminary remarks 194
7.2. Some estimates of a solution of an elliptic equation having one singular point 196
7.3. A measure of the distortion of a small sphere under a mapping with bounded distortion 200
7.4. Behavior of a mapping with bounded distortion near an arbitrary point of the domain 201
§8. Characterization of mappings with bounded distortion by the property of quasiconformality 204
8.1. The concept of a mapping which is quasiconformal at a point and in a domain 204
8.2. Differentiability almost everywhere of quasiconformal \(T \)-mappings 205
8.3. The condition of absolute continuity for a real function of a single variable 208
8.4. The analytic nature of quasiconformal \(T \)-mappings 210
8.5. Main result 213
8.6. Homeomorphic quasiconformal mappings 215
§9. Sequences of mappings with bounded distortion 216
9.1. A theorem on local boundedness of sequences of mappings with bounded distortion 216
9.2. A theorem on the limit of a sequence of mappings with bounded distortion 218
9.3. A sufficient condition for relative compactness of a family of mappings with bounded distortion 220
§10. The set of branch points of a mapping with bounded distortion and locally homeomorphic mappings 221
10.1. The measure of the set of branch points 221
10.2. Some lemmas on local homeomorphisms 224
10.3. The measure of the image of the set of branch points for mappings with bounded distortion 227
10.4. A local homeomorphism theorem 229
10.5. A theorem on the radius of injectivity 234
§11. Extremal properties of mappings with bounded distortion 240
11.1. The homomorphism generated on the algebra of exterior forms by a mapping with bounded distortion 240
11.2. Main theorem 242
§12. Some further results 246
12.1. Classes of domains in \(\mathbb{R}^n \) 246
12.2. Stability in the Liouville theorem on conformal mappings of a space and related questions 251
12.3. Stability of isometric and Lorentz transformations 260
12.4. Quasiconformal and quasi-isometric deformations. Semigroups of quasiconformal transformations 266
12.5. Mappings with distortion coefficient close to 1 277
12.6. The general concept of stability classes 283
12.7. A characterization of quasiconformal mappings as mappings preserving the space W_n^1 287

CHAPTER III. Some results in the theory of functions of a real variable and the theory of partial differential equations 289

§1. Functions with bounded mean oscillation 289
§2. Harnack's inequality for quasilinear elliptic equations 295
 2.1. Preliminary remarks 295
 2.2. Main inequalities 296
 2.3. Consequences of the integral inequalities in §2.2 300
 2.4. Boundedness of generalized solutions of equation (2.3).
 Harnack's inequality 304

§3. Theorems on semicontinuity and convergence with a functional for functionals of the calculus of variations 310
 3.1. Weak convergence of sequences of functions in measure spaces 310
 3.2. Some lemmas about convex functions 312
 3.3. Theorems about semicontinuity of functionals of the calculus of variations 315
 3.4. Corollaries to Theorems 3.1 and 3.2 319
 3.5. The convex envelope of a function 321
 3.6. A theorem on convergence with a functional 325
 3.7. Corollaries to the theorem on convergence with a functional 329

§4. Some properties of functions with generalized derivatives 330
 4.1. A theorem on differentiability almost everywhere 330
 4.2. Proof of Lemma 1.1 in Chapter II 335
 4.3. An estimate of the modulus of continuity of a monotone function of class W_n^1 338

§5. On the degree of a mapping 341

Bibliography 347