Contents

Part I Construction Theory of Sample Functions of Homogeneous Denumerable Markov Processes .. 1

Chapter I The First Construction Theorem ... 3
§ 1.1 Introduction .. 3
§ 1.2 Definition of transformation g_n .. 5
§ 1.3 Convergence of the sequence $X^{(n)}(\omega)$ $(n \geq 1)$ 6
§ 1.4 Further properties of $X^{(n)}(\omega)$ $(n \geq 1)$ 9
§ 1.5 The first construction theorem .. 14

Chapter II The Second Construction Theorem 16
§ 2.1 Introduction .. 16
§ 2.2 The mapping T_{mn} ... 16
§ 2.3 The mapping W_n ... 19
§ 2.4 Constructing auxiliary functions .. 24
§ 2.5 The second construction theorem .. 26
§ 2.6 Summary .. 26
§ 2.7 Two notes ... 27

Part II Theory of Minimal Nonnegative Solutions for Systems of Nonnegative Linear Equations .. 29

Chapter III General Theory ... 31
§ 3.1 Introduction .. 31
§ 3.2 Definition of a system of nonnegative linear equations and definition, existence and uniqueness of its minimal nonnegative solution .. 31
§ 3.3 Comparison theorem and linear combination theorem 34
§ 3.4 Localization theorem ... 36
§ 3.5 Connecting property of the minimal nonnegative solution 36
§ 3.6 Limit theorem .. 38
§ 3.7 Matrix representation .. 39
§ 3.8 Dual theorem .. 39
Chapter IV Calculation

§ 4.1 Some lemmas .. 41
§ 4.2 Reduction of the problems 43
§ 4.3 Ordinary systems of strictly nonhomogeneous equations with dimension n .. 45

Chapter V Systems of 1-Bounded Equations 47

§ 5.1 Introduction .. 47
§ 5.2 First-type leading-outside systems of equations 48
§ 5.3 First-type consistent systems of equations 49
§ 5.4 Tailed random systems of strictly nonhomogeneous equations .. 51
§ 5.5 Regular systems of equations 52
§ 5.6 Pseudo-normal systems of equations 54
§ 5.7 Pseudo-normal systems of equations of finite dimension 56
§ 5.8 Second-type regular systems of equations 61

Part III Homogeneous Denumerable Markov Chains 65

Chapter VI General Theory 67

§ 6.1 Introduction .. 67
§ 6.2 Transition probabilities 67
§ 6.3 Distribution and moments of the first passage time 69
§ 6.4 Distribution and moments of the first passage time of a homogeneous finite Markov chain 74
§ 6.5 Distribution and moments of the times of passage 77
§ 6.6 Criteria for recurrence 79
§ 6.7 Distribution and moments of additive functionals 82
§ 6.8 Derived Markov chains and criteria for atomic almost closed sets .. 86

Chapter VII Martin Exit Boundary Theory 93

§ 7.1 Introduction .. 93
§ 7.2 Decomposition for Markov chains 93
§ 7.3 Limit behaviour of excessive functions 96
§ 7.4 Green functions and Martin kernels 97
§ 7.5 h-chains .. 99
§ 7.6 Limit theorem for Martin kernels 105
§ 7.7 Martin boundaries 107
§ 7.8 Distribution of x_ζ 111
§ 7.9 Martin expressions of excessive functions 112
§ 7.10	Exit space	113
§ 7.11	Uniqueness theorem	114
§ 7.12	Minimal excessive functions	114
§ 7.13	Terminal random variables	115
§ 7.14	Criteria for potentials and excessive functions, Riesz decomposition	116
§ 7.15	Criteria for minimal harmonic functions, minimal potentials and minimal excessive functions	118
§ 7.16	Atomic exit spaces and nonatomic exit spaces	120
§ 7.17	Blackwell decomposition of the state space	122

Chapter VIII Martin Entrance Boundary Theory .. 124

§ 8.1	Introduction	124
§ 8.2	The first group of lemmas	125
§ 8.3	Properties of finite excessive measures	127
§ 8.4	The second group of lemmas	128
§ 8.5	Entrance boundary	131
§ 8.6	Entrance space and the expressions of excessive measures	131

Part IV Homogeneous Denumerable Markov Processes .. 133

Chapter IX Minimal Q-Processes ... 135

§ 9.1	Introduction	135
§ 9.2	Transition probabilities	135
§ 9.3	Distribution and moments of the first passage time	136
§ 9.4	Criterion for the positive recurrence	144
§ 9.5	Distribution and moments of integral-type functionals	146
§ 9.6	Distribution and moments of integral-type functionals on pseudo-translatable sets	159
§ 9.7	Extensions of the results in § 9.3	166

Chapter X Q-Processes of Order One .. 168

§ 10.1	Introduction	168
§ 10.2	Transition probabilities	169
§ 10.3	Distribution and moments of the first passage time	175

Chapter XI Arbitrary Q-Processes .. 186

§ 11.1	Strengthening of the first construction theorem	186
§ 11.2	Transition probability	192
§ 11.3	Decomposition theorems for excessive measures and excessive functions	194
Part V Construction Theory of Homogeneous Denumerable
Markov Processes ... 201

Chapter XII Criteria for the Uniqueness of Q-Processes 203
$\S\ 12.1$ Introduction .. 203
$\S\ 12.2$ Lemmas .. 205
$\S\ 12.3$ Proof of the main theorem 210
$\S\ 12.4$ The case of diagonal type 219
$\S\ 12.5$ The bounded case .. 220
$\S\ 12.6$ The case when E is finite 222
$\S\ 12.7$ The case of a branch Q-matrix 222
$\S\ 12.8$ Another criterion and the finite and nonconservative case 228
$\S\ 12.9$ Independence of the two conditions in Theorem 12.1.1 230
$\S\ 12.10$ Probability interpretation of Condition (i) in
Theorem 12.1.1 .. 232

Chapter XIII Construction of Q-Processes .. 240
$\S\ 13.1$ Construction theorem 240
$\S\ 13.2$ Specifications of all the Q-processes 242
$\S\ 13.3$ Expression of $\{Q, \Pi_{(0,\infty)\times E}\}$-processes 243
$\S\ 13.4$ Discussion .. 243

Chapter XIV Qualitative Theory ... 246
$\S\ 14.1$ Introduction .. 246
$\S\ 14.2$ Statement of results 247
$\S\ 14.3$ Reduction of the construction problem of B-type Q-
processes, Doob processes 253
$\S\ 14.4$ Reduction of the construction problem of $B \cap F$-type
Q-processes .. 260
$\S\ 14.5$ Proofs of Theorems 14.2.1–14.2.3 263
$\S\ 14.6$ Proof and examples of applications of Theorem 14.2.4 263
$\S\ 14.7$ Proofs of Theorems 14.2.5–14.2.10 275

Bibliography .. 279

Index .. 281