Contents

Chapter 1 Introduction 1

1.1 Motivation and General Ideas, 1
1.2 General Orientation, 3

Chapter 2 Bergman Operators: General Theory 8

2.1 Equations to Be Considered, 8
2.2 Integral Operators of Bergman Type, 12
2.3 Conditions for Kernels, 15
2.4 Integral Operators of the First Kind, 20
2.5 Further Representations of Operators of the First Kind, 26
2.6 The Inversion Problem, 31
2.7 Related Ideas and Operators, 34
Additional References, 44

Chapter 3 Integral Operators with Polynomial Kernels and Differential Operators 45

3.1 Operators of Class P, 45
3.2 Integral-Free Representations of Solutions, 51
3.3 Differential Operators, 53
3.4 Inversion Problem for Class P Operators, 57
Additional References, 62

Chapter 4 Polynomial Kernels: Existence and Construction 63

4.1 Existence of Polynomial Kernels in Special Cases, 63
4.2 Existence of Polynomial Kernels for Type I Representations, 68
4.3 Existence of Polynomial Kernels for Type II Representations, 77
4.4 Construction Principle for Class P Operators and Equations, 81
4.5 Second Construction Principle, 88
4.6 Applications, 94
4.7 Self-Adjoint Equations, 98
Additional References, 107

Chapter 5 Further Closed-Form Kernels

5.1 Exponential Operators and Kernels, 109
5.2 Properties of Exponential Operators, 113
5.3 Further Results on Exponential Operators, 116
5.4 General Remarks. Rational Kernels, 118
Additional References, 123

Chapter 6 Riemann–Vekua Representation and Further Methods Related to Bergman Kernels

6.1 Fundamental Domains and Le Roux Operators, 125
6.2 Complex Riemann Function:
 Existence and Uniqueness, 128
6.3 Properties of the Complex Riemann Function, 134
6.4 Riemann–Vekua Representation
 and Bergman Representation, 137
6.5 Bergman–Gilbert Operator, 147
6.6 Relations to Carroll’s Theory of Transmutations, 158
 Additional References, 165

Chapter 7 Determination of Riemann Functions

7.1 Classical Methods and Generalizations, 167
7.2 Addition of Riemann Functions, 176
7.3 Further Results, 180
 Additional References, 196

Chapter 8 Coefficient Problem and Singularities of Solutions

8.1 General Setting and Approach, 198
8.2 Use of Operators of the First Kind, 199
8.3 Further Coefficient Theorems, 201
8.4 Coefficient Theorems for Solutions, 203
8.5 Singularities of Solutions, 207
 Additional References, 208

Chapter 9 Approximation of Solutions

9.1 Analogs of Runge’s and Mergelyan’s Theorems, 210
9.2 Approximation Theorem of Walsh Type, 213
9.3 Further Approximation Theorems for Solutions, 216
Additional References, 222

Chapter 10 Value Distribution Theory of Solutions 223

10.1 General Idea and Setting, 224
10.2 Generalized Nevanlinna's Second Theorem, 236
10.3 Analog of the Little Picard Theorem, 246
10.4 Generalization of the Great Picard Theorem, 249
Additional References, 255

Chapter 11 Applications of Class P Operators. Function Theory of the Bauer–Peschl Equation 256

11.1 Mathematical and Physical Importance of the Equation, 257
11.2 Representations of Solutions, 260
11.3 Properties of Solutions Satisfying Additional Conditions, 272
11.4 Analogs of Theorems from Geometric Function Theory, 289
11.5 A Function Theory of Solutions Satisfying Generalized Cauchy–Riemann Equations, 298
Additional References, 305

Chapter 12 Application to Compressible Fluid Flow 306

12.1 Basic Concepts and Equations, 306
12.2 Bernoulli's Law, Chaplygin's Equation, 309
12.3 Method of Pseudoanalytic Functions, 312
12.4 Chaplygin's Approach, 314
12.5 Bergman's Integral Operator Method, 317
Additional References, 321

Chapter 13 Integral Operators Applied to Transonic Flow. Tricomi Equation 322

13.1 Equations for the Stream Function, 323
13.2 Integral Operator for the Tricomi Equation, 325
13.3 Cauchy Problems for the Tricomi Equation, 329
13.4 Entire Cauchy Data for the Tricomi Equation. Borel Transform, 333
13.5 Polynomial Expansions of Solutions of the Tricomi Equation, 335
13.6 A Special Cauchy Problem, 339
13.7 Eichler’s Integral Operator for the Tricomi Equation, 340
13.8 Families of Solutions of the Tricomi Equation, 344
Additional References, 348

Bibliography 349
Symbol Index 379
Author Index 381
Subject Index 387