Contents

PREFACE

1. NORMED LINEAR SPACES
 1.1 Norms or length functions 1
 1.2 Metric and topology 3
 1.3 Translation invariance 4
 1.4 Subspaces and quotients 5
 1.5 The Riesz lemmas 7
 1.6 Cartesian products 10
 1.7 Isometry and equivalence 12
 1.8 Sequence and function spaces 14
 1.9 Enlargements 17
 1.10 Normed linear algebras 19
 1.11 Partially ordered spaces 21

2. BOUNDED LINEAR OPERATORS 25
 2.1 Continuity of linear operators 25
 2.2 The normed space of bounded operators 26
 2.3 Subspaces and quotients 28
 2.4 Cartesian products 31
 2.5 Projections 33
 2.6 Sequence and function spaces 39
 2.7 Enlargements 41
 2.8 Shift operators 43
 2.9 Composition operators 46
 2.10 Normed linear algebras 49
 2.11 Partially ordered spaces 51
3. INVERTIBILITY AND SINGULARITY

<table>
<thead>
<tr>
<th>3.1</th>
<th>Invertibility and isomorphism</th>
<th>53</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>Monomorphisms and epimorphisms</td>
<td>56</td>
</tr>
<tr>
<td>3.3</td>
<td>Boundedness below</td>
<td>60</td>
</tr>
<tr>
<td>3.4</td>
<td>Openness</td>
<td>65</td>
</tr>
<tr>
<td>3.5</td>
<td>Boundary mappings</td>
<td>70</td>
</tr>
<tr>
<td>3.6</td>
<td>Left and right invertibility</td>
<td>73</td>
</tr>
<tr>
<td>3.7</td>
<td>Almost invertible operators</td>
<td>76</td>
</tr>
<tr>
<td>3.8</td>
<td>Regular operators</td>
<td>80</td>
</tr>
<tr>
<td>3.9</td>
<td>Essential invertibility</td>
<td>86</td>
</tr>
<tr>
<td>3.10</td>
<td>Algebraic invertibility</td>
<td>91</td>
</tr>
<tr>
<td>3.11</td>
<td>Subspaces, quotients, and products</td>
<td>98</td>
</tr>
<tr>
<td>3.12</td>
<td>Sequence and function spaces</td>
<td>102</td>
</tr>
</tbody>
</table>

4. BANACH SPACES AND COMPLETENESS

<table>
<thead>
<tr>
<th>4.1</th>
<th>Cauchy sequences</th>
<th>107</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Completeness</td>
<td>110</td>
</tr>
<tr>
<td>4.3</td>
<td>Spaces of functions and operators</td>
<td>113</td>
</tr>
<tr>
<td>4.4</td>
<td>Extension by continuity</td>
<td>115</td>
</tr>
<tr>
<td>4.5</td>
<td>Completions</td>
<td>123</td>
</tr>
<tr>
<td>4.6</td>
<td>The open mapping theorem</td>
<td>127</td>
</tr>
<tr>
<td>4.7</td>
<td>Almost open and onto mappings</td>
<td>130</td>
</tr>
<tr>
<td>4.8</td>
<td>Complemented subspaces</td>
<td>132</td>
</tr>
<tr>
<td>4.9</td>
<td>Uniform boundedness</td>
<td>134</td>
</tr>
</tbody>
</table>

5. LINEAR FUNCTIONALS AND DUALITY

<table>
<thead>
<tr>
<th>5.1</th>
<th>The dual space and the dual operator</th>
<th>137</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>Poles and polars</td>
<td>139</td>
</tr>
<tr>
<td>5.3</td>
<td>The Hahn-Banach theorem</td>
<td>141</td>
</tr>
<tr>
<td>5.4</td>
<td>Duality theory</td>
<td>143</td>
</tr>
<tr>
<td>5.5</td>
<td>The separation theorem</td>
<td>145</td>
</tr>
<tr>
<td>5.6</td>
<td>Composition operators</td>
<td>150</td>
</tr>
<tr>
<td>5.7</td>
<td>Enlargements</td>
<td>154</td>
</tr>
<tr>
<td>5.8</td>
<td>Sequence and function spaces</td>
<td>156</td>
</tr>
<tr>
<td>5.9</td>
<td>The second dual</td>
<td>160</td>
</tr>
<tr>
<td>5.10</td>
<td>An uncomplemented subspace</td>
<td>163</td>
</tr>
<tr>
<td>5.11</td>
<td>Extreme points</td>
<td>165</td>
</tr>
<tr>
<td>5.12</td>
<td>Differential calculus</td>
<td>166</td>
</tr>
</tbody>
</table>

6. FINITE DIMENSIONAL SPACES AND COMPACTNESS

<table>
<thead>
<tr>
<th>6.1</th>
<th>Linear dependence and independence</th>
<th>173</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Finite dimensional spaces</td>
<td>178</td>
</tr>
</tbody>
</table>
6.3 Operators of finite rank 183
6.4 Fredholm operators 187
6.5 Weyl operators and the index 192
6.6 Compactness and total boundedness 197
6.7 Essential enlargement 202
6.8 Compact operators 206
6.9 Semi-Fredholm operators 208
6.10 Almost Fredholm operators 214
6.11 Completeness 220
6.12 Duality theory 222
6.13 Composition operators 229

7. OPERATOR ALGEBRA AND COMMUTIVITY 237
7.1 Commutants and double commutants 237
7.2 Maximal ideals and the radical 240
7.3 Regularity 245
7.4 Quasinilpotent elements 251
7.5 Polar and quasipolar elements 256
7.6 Homomorphisms and Fredholm theory 261
7.7 Browder operators 265
7.8 Ascent and descent 271
7.9 Semi-Browder operators 276
7.10 Connectedness and homotopy 280
7.11 Generalized exponentials 290
7.12 Continuous functions 296
7.13 Linear functionals and states 304

8. INNER PRODUCTS AND ORTHOGONALITY 309
8.1 Inner products 309
8.2 Orthogonality 313
8.3 The nearest point theorem 317
8.4 Completeness 320
8.5 Duality 323
8.6 Positive operators 325
8.7 Regularity 329
8.8 Hilbert algebra 332
8.9 Enlargements 334

9. LIOUVILLE'S THEOREM AND SPECTRAL THEORY 337
9.1 Liouville's theorem 337
9.2 The spectrum 341
9.3 The spectral boundary 345
9.4 Subalgebras and quotients 348
9.5 The spectral radius 352
9.6 Gelfand’s theorem 356
9.7 The functional calculus 362
9.8 Essential spectra 369
9.9 Hilbert algebra 378
9.10 States and representations 383

10. COMPARISON OF OPERATORS AND EXACTNESS 391
10.1 Majorization and factorization 391
10.2 Mixed interpolation 394
10.3 Exactness 401
10.4 Composition operators and duality 414
10.5 Enlargement and completion 419
10.6 Essential exactness 425
10.7 Algebraic exactness 435
10.8 Hilbert spaces 441
10.9 Skew exactness 448

11. MULTIPARAMETER SPECTRAL THEORY 457
11.1 Left and right spectra 457
11.2 Polynomials 461
11.3 The spectral mapping theorem 466
11.4 Many variables 470
11.5 The Silov boundary 474
11.6 Composition operators 481
11.7 Tensor products 493
11.8 Quasicommuting systems 509
11.9 The Taylor spectrum 517
11.10 Algebraic and essential spectra 526
11.11 Functional calculus 532

NOTES, COMMENTS, AND EXERCISES 541
REFERENCES 559
NOTATION 581
INDEX 585