Contents

Preface

1 DIFFERENTIAL SYSTEMS

1.1 Mathematical models of systems
1.1.1. System concept 1
1.1.2. System interaction with surroundings 1
1.1.3. Inputs, outputs and state of a system 2
1.1.4. Mathematical model of a system 2
1.1.5. Types of mathematical models 5

1.2 Characteristics of systems
1.2.1. System operator 7
1.2.2. Linear and non-linear systems 9
1.2.3. Weighting function of an one-dimensional linear system 11
1.2.4. Weighting function of a multi-dimensional linear system 14
1.2.5. Typical structure of technical systems 16
1.2.6. Differential systems 16
1.2.7. Equations of an automatically controlled differential system 17
1.2.8. Stationary systems 20
1.2.9. Transfer function of a stationary linear system 21
1.2.10. Frequency response of a stationary linear system 22

1.3 Linear differential systems
1.3.1. Equations of a linear system 24
1.3.2. Weighting function 25
1.3.3. Finding weighting functions by the adjoint system method 27
1.3.4. Transformation of linear system equations into Cauchy form 28
1.3.5. Inverse systems 32
1.3.6. Transfer function of a stationary linear system 36
1.3.7. The differential equation determined by a transfer function 39

1.4 Stochastic differential systems
1.4.1. General form of equations of stochastic differential systems 41
1.4.2. Equations of an automatically controlled stochastic differential system 42
1.4.3. Linear stochastic differential systems 44
1.4.4. Linear systems with parametric noises 45

PROBLEMS 46

2 RANDOM FUNCTIONS 53

2.1 Random functions and their characteristics 53
2.1.1. Definition of a random function 53
2.1.2. Finite-dimensional distributions of a random function 54
2.1.3. Markov random processes 58
2.1.4. Probabilities of events connected with random functions 60

2.2 Moments of a random function 61
2.2.1. Expectation 61
2.2.2. Covariance function of a scalar random function 62
2.2.3. Cross-covariance function of scalar random functions 65
2.2.4. Covariance function of a vector random function 66
2.2.5. White noise 66
2.2.6. Cross-covariance function of vector random functions 69
2.2.7. Correlation functions 69
2.2.8. Normally distributed random functions 71
2.2.9. Initial second-order moments 72
2.2.10. Second-order moment operators 73
2.2.11. Properties of second-order moments 73
2.2.12. Moments of higher orders 75

2.3 Orthogonal expansions of finite-dimensional densities of a random function 76
2.3.1. Orthogonal expansion of a density 76
2.3.2. Hermite polynomial expansion of a density 80
2.3.3. Relations between quasi-moments and semi-invariants 81
2.3.4. Edgeworth series 82
2.3.5. Consistent biorthogonal systems of polynomials 85
2.3.6. Consistent orthogonal expansions of finite-dimensional densities 87
2.3.7. Consistent Hermite polynomial expansions of finite-dimensional densities 88

2.4 Analysis operations on random functions 89
2.4.1. Introductory remarks 89
2.4.2. Mean square convergence 90
2.4.3. Mean square continuity of a random function 91
2.4.4. Differentiation of random functions 92
2.4.5. Integration of random functions 95
2.4.6. Mean square integrals with variable limits 99
2.4.7. Formula of integration by parts 100
2.4.8. Integration of linear differential equations containing random functions 101
2.4.9. Weak mean square convergence and generalized random functions 103
2.4.10. Integrals containing white noise 108
2.4.11. Derivatives of a white noise 109

Problems 111

3 STOCHASTIC INTEGRALS, DIFFERENTIALS AND DIFFERENTIAL EQUATIONS 119

3.1 Stochastic integrals of non-random functions 119
 3.1.1. Processes with uncorrelated increments 119
 3.1.2. The stochastic integral 123
 3.1.3. The vector stochastic integral 127
 3.1.4. Integration by parts 127
 3.1.5. Stochastic integral approximation 129
 3.1.6. White noise as the derivative of a process with uncorrelated increments 132
 3.1.7. Stochastic integrals as integrals containing a white noise 133

3.2 Stochastic integrals of non-random functions of a vector argument 133
 3.2.1. Stochastic measures 133
 3.2.2. The stochastic integral 136
 3.2.3. Integral canonical representations of random functions 138

3.3 Linear stochastic differential equations 139
 3.3.1. Definition 139
 3.3.2. Solution of a linear equation 140
 3.3.3. Linear equations of higher orders 143

3.4 Stochastic integrals of random functions 144
 3.4.1. Processes with independent increments 144
 3.4.2. White noise in the strict sense 149
 3.4.3. Wiener processes 150
 3.4.4. Integral representation of a general Poisson process 151
 3.4.5. General form of a process with independent increments 154
 3.4.6. The Itô integral 157
 3.4.7. The vector Itô integral 160
 3.4.8. Other types of stochastic integrals 160
 3.4.9. Stochastic integrals as integrals containing white noise 162
 3.4.10. The general Itô integral 162
3.5 Stochastic differentials
 3.5.1. The Itô differential 163
 3.5.2. Differentiation of a composite function in the case of a Wiener process 164
 3.5.3. Differentiation of a composite function in the case of a Poisson process 167
 3.5.4. Differentiation of a composite function in the general case 169
 3.5.5. Other types of stochastic differentials 175

3.6 Non-linear stochastic differential equations
 3.6.1. The Itô equation 178
 3.6.2. The Itô equation determines a Markov process 180
 3.6.3. Change of variables in the Itô equation 180
 3.6.4. Other types of stochastic differential equations 182
 3.6.5. Transformation of a stochastic differential equation into an Itô equation 182
 3.6.6. Numerical integration of stochastic differential equations 185

Problems 187

4 STATIONARY RANDOM FUNCTIONS 189

4.1 Characteristics of stationary random functions
 4.1.1. Definition of a stationary random function 189
 4.1.2. Properties of stationary random functions 190
 4.1.3. Cross-stationary random functions 192
 4.1.4. Differentiation of stationary random functions 193
 4.1.5. Some typical covariance functions 195
 4.1.6. Random functions reducible to stationary ones 196

4.2 Spectral theory of stationary random functions
 4.2.1. Stationary random functions with a discrete spectrum 199
 4.2.2. Stationary random functions with a continuous spectrum 200
 4.2.3. Spectral function and spectral density 203
 4.2.4. Spectral expansion 204
 4.2.5. Properties of spectral density 213
 4.2.6. Stationary white noise 214
 4.2.7. Correlation interval of a stationary random function 215

4.3 Linear operations on stationary random functions
 4.3.1. Spectral densities of derivatives 216
 4.3.2. Stationary linear systems with random inputs 217
 4.3.3. Calculation of variances and covariances of signals components 220

Problems 222
5 THEORY OF STOCHASTIC DIFFERENTIAL SYSTEMS. LINEAR SYSTEMS

5.1 Transformation of system equations into stochastic equations

5.1.1. The principal possibility of replacing the random function in a differential equation by a white noise

5.1.2. The Itô equation corresponding to a given equation

5.1.3. The practical possibility of replacing the random function in a differential equation by a white noise

5.1.4. Method of shaping filters

5.1.5. The shaping filter for a stationary random process

5.1.6. The shaping filter for a stationary vector process

5.1.7. The shaping filter for a process reducible to a stationary one

5.1.8. Equations obtained by the shaping filter method

5.1.9. Stochastic equations of a system

5.2 Moments of the state vector of a linear system

5.2.1. Formula for the state vector

5.2.2. Formulae for the first- and second-order moments

5.2.3. The differential equation for the expectation

5.2.4. The differential equation for the covariance matrix

5.2.5. The differential equation for the second-order moment

5.2.6. The differential equation for the covariance function

5.2.7. Stationary processes in stationary linear systems

5.3 Finite-dimensional distributions of state vector. General theory

5.3.1. The one-dimensional characteristic function

5.3.2. Finite-dimensional characteristic functions

5.3.3. Specific form of equations for characteristic functions

5.3.4. Equations for finite-dimensional densities

5.3.5. Formulae for the function χ

5.3.6. Equations for finite-dimensional densities in the case of a Wiener process

5.3.7. Equation for transition density in the case of a Wiener process

5.3.8. The case of a polynomial right-hand side and the coefficient of the white noise independent of the system state

5.3.9. The case of a polynomial right-hand side and a normal white noise

5.3.10 Stationary processes in stationary stochastic differential systems

5.4 Finite-dimensional distributions of the state vector of a linear system

5.4.1. Equations for characteristic functions in the case of a linear system

5.4.2. Integration of equations for characteristic functions
5.4.3. Explicit formulae for finite-dimensional characteristic functions
5.4.4. The case of a normal distribution of system state
5.4.5. Strictly stationary processes in stationary linear systems

Problems

6 NON-LINEAR STOCHASTIC DIFFERENTIAL SYSTEMS

6.1 Noise-free systems with random initial conditions
6.1.1. Direct determination of finite-dimensional characteristic functions
6.1.2. Solution of equations for characteristic functions
6.1.3. Finding the one-dimensional density
6.1.4. Finding the multi-dimensional densities

6.2 Moments of the state vector of a non-linear system
6.2.1. Formula for the derivative of the expectation
6.2.2. Formula for the derivative of the second-order moment
6.2.3. Formula for the derivative of the covariance matrix
6.2.4. Formula for the derivatives of the second-order moment and covariance function
6.2.5. Infinite set of equations for moments
6.2.6. Linear system with parametric noises
6.2.7. Stationary processes in linear systems with parametric noises

6.3 Normal approximation of the finite-dimensional distributions of the state vector
6.3.1. One-dimensional distribution
6.3.2. Multi-dimensional distributions
6.3.3. Approximate determination of stationary processes in non-linear systems
6.3.4. Parametrization of distributions

6.4 Method of moments
6.4.1. One-dimensional distribution. Initial moments
6.4.2. One-dimensional distribution. Central moments
6.4.3. Evaluation of the integrands in the equations
6.4.4. Multi-dimensional distributions. Initial moments
6.4.5. Multi-dimensional distributions. Central moments
6.4.6. Approximate determination of stationary processes in non-linear systems

6.5 Semi-invariant methods
6.5.1. Method of semi-invariants. One-dimensional distribution
6.5.2. Method of semi-invariants. Multi-dimensional distributions
6.5.3. Moment-semi-invariant method 347
6.5.4. Approximate determination of stationary processes in non-linear systems 349

6.6 Methods based on orthogonal expansions 349
6.6.1. Orthogonal expansion of the one-dimensional distribution 349
6.6.2. Method of quasi-moments 352
6.6.3. Evaluation of the integrands in the equations 353
6.6.4. Consistent orthogonal expansions of the finite-dimensional distributions 355
6.6.5. Consistent Hermite polynomial expansions 360
6.6.6. Approximate determination of stationary processes in non-linear systems 363
6.6.7. Reducing the number of equations 363

Problems 366

7 THEORY OF OPTIMAL FILTERING. LINEAR FILTERING 373

7.1 Estimation problems in stochastic systems 373
7.1.1. Estimation of the system state 373
7.1.2. Estimation of unknown parameters of a system 375
7.1.3. Recognition of signals 375
7.1.4. Design of mathematical models of systems 376
7.1.5. Extrapolation of the system state 377
7.1.6 Statement of mathematical problems of estimation and extrapolation 377

7.2 Optimal filtering 379
7.2.1. General formula for the optimal estimate 379
7.2.2. Auxiliary problem 380
7.2.3. Transformation of equations 381
7.2.4. Stochastic differential of the optimal estimate of a function of the system state 384
7.2.5. Equation for the posterior characteristic function 388
7.2.6. Equation for the posterior density 389
7.2.7. Stochastic differential of the posterior expectation 390
7.2.8. Stochastic differential of the posterior second-order moment 391
7.2.9. Stochastic differential of the posterior covariance matrix 392
7.2.10. Application of optimal filtering theory to the estimation of unknown parameters in equations 394
7.2.11. Stochastic differentials of the posterior probabilities in recognition problem 394
7.2.12. Possibility of solution of optimal filtering problems in the case of an autocorrelated noise in observations 396
7.3 Optimal linear filtering
7.3.1. Equations of linear filtering 397
7.3.2. Kalman–Bucy filters 399
7.3.3. Innovation processes 401
7.3.4. Optimal linear filtering in the case of autocorrelated noise in observations 403
7.3.5. Method of differentiation of the observable signal 409
7.3.6. Initial conditions in the case of autocorrelated noise 413
7.3.7. Differentiating properties of the optimal filter in the case of autocorrelated noise 417
7.3.8. Optimal linear extrapolation 418
7.3.9. The case of equations linear in the state vector 420
7.3.10. Optimal recognition in linear systems 423
7.3.11. Optimal recognition in the case of equations linear in the state vector 425

Problems 426

8 SUBOPTIMAL FILTERING 428

8.1 Normal approximation method 428
8.1.1. General characteristic of approximate optimal filtering methods 428
8.1.2. Parameterization of posterior distributions 429
8.1.3. Normal approximation of the posterior distribution 429

8.2 Methods based on approximate solution of equations of optimal filtering 432
8.2.1. Method of moments. Initial moments 432
8.2.2. Method of moments. Central moments 435
8.2.3. Method of semi-invariants 440
8.2.4. Method of orthogonal expansions 443
8.2.5. Method of quasi-moments 445
8.2.6. Reducing the number of equations 446

8.3 Methods based on simplification of equations of optimal filtering 447
8.3.1. Ways of simplification of equations of optimal filtering 447
8.3.2. Extended Kalman–Bucy filter 447
8.3.3. Second-order filters 450
8.3.4. Gauss filter 452
8.3.5. Prior estimation of filter accuracy 452

Problems 454
9 CONDITIONALLY OPTIMAL FILTERING AND EXTRAPOLATION 455

9.1 Problems of conditionally optimal filtering and extrapolation 455
 9.1.1. The main idea of conditionally optimal filtering 455
 9.1.2. Classes of admissible filters 456
 9.1.3. Classes of admissible filters in the case of autocorrelated noise in observations 458
 9.1.4. Statement of problems of conditionally optimal filtering and extrapolation 458

9.2 Solution of filtering and extrapolation problems 462
 9.2.1. Determination of the coefficients of the conditionally optimal filter equation 462
 9.2.2. The case of a Wiener process and linear filter 464
 9.2.3. The case of a Wiener process and non-linear filter 466
 9.2.4. Equations for optimal coefficients in the general case 468
 9.2.5. Equations determining the conditionally optimal filter 472
 9.2.6. Equations determining the conditionally optimal extrapolator 480
 9.2.7. Formula for the derivative of the covariance matrix of error 484
 9.2.8. Using conditionally optimal filtering in recognition problems 484

9.3 Filtering and extrapolation in the case of autocorrelated noise in observations 485
 9.3.1. Transformation of equations 485
 9.3.2. Determination of the coefficients of the conditionally optimal filter equation 488
 9.3.3. Optimal coefficients of the equation of a linear filter 489
 9.3.4. Optimal coefficients of the equation of a non-linear filter 489
 9.3.5. Equations determining the conditionally optimal filter 490
 9.3.6. Equations determining the conditionally optimal extrapolator 495
 9.3.7. Formula for the derivative of the covariance matrix of error 499

9.4 Linear filtering and extrapolation 500
 9.4.1. Filtering 500
 9.4.2. Extrapolation 504
 9.4.3. Filtering in the case of autocorrelated noise 508
 9.4.4. Extrapolation in the case of autocorrelated noise 513

9.5 Conditionally optimal discrete filtering and extrapolation 516
 9.5.1. Statement of the problem 516
 9.5.2. Classes of admissible filters 517
 9.5.3. The conditionally optimal discrete filter 518
9.5.4. Filtering in the case of dependent measurement errors 521
9.5.5. The conditionally optimal discrete extrapolator 522
9.5.6. Extrapolation in the case of dependent measurement errors 524

Problems 525

APPENDICES 527

1. Hermite polynomials 527
2. Riccati equation 533
3. Conditional moments of a random vector formed by a part of the components of a normally distributed vector 535
4. Statistical linearization of typical non-linear functions 536
5. Stochastic Itô differentials of typical non-linear functions 539

REFERENCES 541

INDEX 547