CONTENTS

PREFACE xi
ACKNOWLEDGMENTS xiii

1 INTRODUCTION 1

1.1 Initial Value Problems 1
1.2 Examples of Initial Value Problems 7
Problems 35

2 FUNDAMENTAL THEORY 39

2.1 Preliminaries 40
2.2 Existence of Solutions 45
2.3 Continuation of Solutions 49
2.4 Uniqueness of Solutions 53
2.5 Continuity of Solutions with Respect to Parameters 58
2.6 Systems of Equations 63
2.7 Differentiability with Respect to Parameters 68
2.8 Comparison Theory 70
2.9 Complex Valued Systems* Problems 74 75
3 \textit{LINEAR SYSTEMS} 80

3.1 Preliminaries 80
3.2 Linear Homogeneous and Nonhomogeneous Systems 88
3.3 Linear Systems with Constant Coefficients 100
3.4 Linear Systems with Periodic Coefficients 112
3.5 Linear nth Order Ordinary Differential Equations 117
3.6 Oscillation Theory 125
 Problems 130

4 \textit{BOUNDARY VALUE PROBLEMS*} 137

4.1 Introduction 137
4.2 Separated Boundary Conditions 143
4.3 Asymptotic Behavior of Eigenvalues 147
4.4 Inhomogeneous Problems 152
4.5 General Boundary Value Problems 159
 Problems 164

5 \textit{STABILITY} 167

5.1 Notation 168
5.2 The Concept of an Equilibrium Point 169
5.3 Definitions of Stability and Boundedness 172
5.4 Some Basic Properties of Autonomous and Periodic Systems 178
5.5 Linear Systems 179
5.6 Second Order Linear Systems 186
5.7 Lyapunov Functions 194
5.8 Lyapunov Stability and Instability Results: Motivation 202
5.9 Principal Lyapunov Stability and Instability Theorems 205
5.10 Linear Systems Revisited 218
5.11 Invariance Theory .. 221
5.12 Domain of Attraction 230
5.13 Converse Theorems .. 234
5.14 Comparison Theorems 239
5.15 Applications: Absolute Stability of Regulator Systems 243
Problems .. 250

6 PERTURBATIONS OF LINEAR SYSTEMS 258

6.1 Preliminaries .. 258
6.2 Stability of an Equilibrium Point 260
6.3 The Stable Manifold ... 265
6.4 Stability of Periodic Solutions 273
6.5 Asymptotic Equivalence Problems 280
Problems .. 285

7 PERIODIC SOLUTIONS OF TWO-DIMENSIONAL SYSTEMS 290

7.1 Preliminaries .. 290
7.2 Poincaré–Bendixson Theory 292
7.3 The Levinson–Smith Theorem 298
Problems .. 302

8 PERIODIC SOLUTIONS OF SYSTEMS 305

8.1 Preliminaries .. 306
8.2 Nonhomogeneous Linear Systems 306
8.3 Perturbations of Nonlinear Periodic Systems 312
8.4 Perturbations of Nonlinear Autonomous Systems 317
8.5 Perturbations of Critical Linear Systems 319
8.6 Stability of Systems with Linear Part Critical 324
8.7 Averaging .. 330
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8 Hopf Bifurcation</td>
</tr>
<tr>
<td>8.9 A Nonexistence Result*</td>
</tr>
<tr>
<td>Problems</td>
</tr>
</tbody>
</table>

BIBLIOGRAPHY

INDEX

342 346