Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 0</td>
<td>Review and miscellanea</td>
</tr>
<tr>
<td>0.0</td>
<td>Introduction</td>
</tr>
<tr>
<td>0.1</td>
<td>Vector spaces</td>
</tr>
<tr>
<td>0.2</td>
<td>Matrices</td>
</tr>
<tr>
<td>0.3</td>
<td>Determinants</td>
</tr>
<tr>
<td>0.4</td>
<td>Rank</td>
</tr>
<tr>
<td>0.5</td>
<td>Nonsingularity</td>
</tr>
<tr>
<td>0.6</td>
<td>The usual inner product</td>
</tr>
<tr>
<td>0.7</td>
<td>Partitioned matrices</td>
</tr>
<tr>
<td>0.8</td>
<td>Determinants again</td>
</tr>
<tr>
<td>0.9</td>
<td>Special types of matrices</td>
</tr>
<tr>
<td>0.10</td>
<td>Change of basis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Eigenvalues, eigenvectors, and similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Introduction</td>
</tr>
<tr>
<td>1.1</td>
<td>The eigenvalue–eigenvector equation</td>
</tr>
<tr>
<td>1.2</td>
<td>The characteristic polynomial</td>
</tr>
<tr>
<td>1.3</td>
<td>Similarity</td>
</tr>
<tr>
<td>1.4</td>
<td>Eigenvectors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Unitary equivalence and normal matrices</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>Introduction</td>
</tr>
<tr>
<td>2.1</td>
<td>Unitary matrices</td>
</tr>
</tbody>
</table>
Chapter 3 Canonical forms
3.0 Introduction 119
3.1 The Jordan canonical form: a proof 121
3.2 The Jordan canonical form: some observations and applications 129
3.3 Polynomials and matrices: the minimal polynomial 142
3.4 Other canonical forms and factorizations 150
3.5 Triangular factorizations 158

Chapter 4 Hermitian and symmetric matrices
4.0 Introduction 167
4.1 Definitions, properties, and characterizations of Hermitian matrices 169
4.2 Variational characterizations of eigenvalues of Hermitian matrices 176
4.3 Some applications of the variational characterizations 181
4.4 Complex symmetric matrices 201
4.5 Congruence and simultaneous diagonalization of Hermitian and symmetric matrices 218
4.6 Consimilarity and condiagonalization 244

Chapter 5 Norms for vectors and matrices
5.0 Introduction 257
5.1 Defining properties of vector norms and inner products 259
5.2 Examples of vector norms 264
5.3 Algebraic properties of vector norms 268
5.4 Analytic properties of vector norms 269
5.5 Geometric properties of vector norms 281
5.6 Matrix norms 290
5.7 Vector norms on matrices 320
5.8 Errors in inverses and solutions of linear systems 335
Chapter 6 Location and perturbation of eigenvalues 343
 6.0 Introduction 343
 6.1 Geršgorin discs 344
 6.2 Geršgorin discs – a closer look 353
 6.3 Perturbation theorems 364
 6.4 Other inclusion regions 378

Chapter 7 Positive definite matrices 391
 7.0 Introduction 391
 7.1 Definitions and properties 396
 7.2 Characterizations 402
 7.3 The polar form and the singular value decomposition 411
 7.4 Examples and applications of the singular value decomposition 427
 7.5 The Schur product theorem 455
 7.6 Congruence: products and simultaneous diagonalization 464
 7.7 The positive semidefinite ordering 469
 7.8 Inequalities for positive definite matrices 476

Chapter 8 Nonnegative matrices 487
 8.0 Introduction 487
 8.1 Nonnegative matrices – inequalities and generalities 490
 8.2 Positive matrices 495
 8.3 Nonnegative matrices 503
 8.4 Irreducible nonnegative matrices 507
 8.5 Primitive matrices 515
 8.6 A general limit theorem 524
 8.7 Stochastic and doubly stochastic matrices 526

Appendices
 A Complex numbers 531
 B Convex sets and functions 533
 C The fundamental theorem of algebra 537
 D Continuous dependence of the zeroes of a polynomial on its coefficients 539
 E Weierstrass’s theorem 541

References 543
Notation 547
Index 549