CONTENTS

INTRODUCTION

CHAPTER 1: COXETER GROUPS, HECKE ALGEBRAS AND THEIR REPRESENTATIONS

§1.1 Coxeter groups and Weyl groups
§1.2 Hecke algebras
§1.3 W-graphs
§1.4 Kazhdan-Lusztig polynomials
§1.5 Cells of a Coxeter group
§1.6 The star operations in the sets $D_L(s,t), D_R(s,t)$
§1.7 Examples of cells

CHAPTER 2: APPLICATIONS OF KAZHDAN-LUSZTIG THEORY

§2.1 ϕ-cells of a Coxeter group
§2.2 The canonical isomorphism between $\mathbb{Q}[X^\frac{1}{2}]W$ and $\mathbb{H}[X^\frac{1}{2}]$
§2.3 Representations of the Weyl group
§2.4 Kazhdan-Lusztig conjecture for composition factors of Verma modules
§2.5 Classification of primitive ideals in universal enveloping algebras of semisimple Lie algebras
§2.6 Modular representation theory of algebraic groups and related finite groups
§2.7 Weight multiplicities and Kazhdan-Lusztig polynomials

CHAPTER 3: GEOMETRIC INTERPRETATIONS OF THE KAZHDAN-LUSZTIG POLYNOMIALS

§3.1 Complexes of sheaves on an algebraic variety
§3.2 The intersection chain complex
§3.3 The construction of the intersection chain complex
§3.4 The case of Schubert varieties
§3.5 The case of the unipotent variety

CHAPTER 4: THE ALGEBRAIC DESCRIPTIONS OF THE AFFINE WEYL GROUPS \tilde{A}_n OF TYPE \tilde{A}_{n-1}, $n > 2$

§4.1 Three algebraic descriptions of the affine Weyl group \tilde{A}_n
§4.2 The functions $\ell(w), \ell(w), R(w)$ on the affine Weyl group \tilde{A}_n
§4.3 The subsets $D_L(s_t), D_R(s_t)$ of the affine Weyl group \tilde{A}_n, $n > 3$
§4.4 Some definitions and terminology
CHAPTER 5: THE PARTITION OF n ASSOCIATED WITH AN ELEMENT OF THE AFFINE WEYL GROUP \tilde{A}_n

CHAPTER 6: A GEOMETRICAL DESCRIPTION OF THE AFFINE WEYL GROUP \tilde{A}_n

§6.1 The description of \tilde{A}_n as a set of alcoves
§6.2 The relation between two descriptions of \tilde{A}_n
§6.3 The map $\sigma: A_n \rightarrow A_n$ defined in geometrical terms

CHAPTER 7: ADMISSIBLE SIGN TYPES OF RANK n

§7.1 Admissible sign types and their equivalence relation
§7.2 Connected sets of A_n and cells of S
§7.3 The cardinality of S

CHAPTER 8: ITERATED STAR OPERATIONS AND INTERCHANGING OPERATIONS ON BLOCKS

§8.1 Iterated star operations
§8.2 Some results on iterated star operations
§8.3 The interchanging operations $\rho_{A_2}^{A_1}$ and $\theta_{A_1}^{A_2}$
§8.4 More general interchanging operations

CHAPTER 9: THE SUBSET $\sigma^{-1}(\lambda)$ OF THE AFFINE WEYL GROUP A_n

§9.1 Two simple lemmas on iterated star operations
§9.2 The subset F of the affine Weyl group A_n
§9.3 The subset H_{λ} of $\sigma^{-1}(\lambda)$
§9.4 $\sigma^{-1}(\lambda)$ is a union of RL-equivalence classes

CHAPTER 10: THE SET N_{λ} OF NORMALIZED ELEMENTS OF $\sigma^{-1}(\lambda)$

CHAPTER 11: THE ORBIT SPACE \tilde{A}_n OF THE AFFINE WEYL GROUP A_n

§11.1 Definition of \tilde{A}_n
§11.2 The map $\eta: A_n \rightarrow \tilde{A}_n$
§11.3 The partition associated with an element of \tilde{A}_n
§11.4 The functions $\ell(\tilde{w}), \mathcal{L}(\tilde{w}), R(\tilde{w})$ and star operations in \tilde{A}_n
§11.5 Interchanging operations on blocks in \tilde{A}_n
§11.6 Totally ordered sets with a distance function
§11.7 Deletion operations in \tilde{A}_n
§11.8 Commutativity of interchanging operations with deletion
§11.9 Commutativity of interchanging operations with the map η

CHAPTER 12: THE SEQUENCE $\xi(w,k)$ BEGINNING WITH AN ELEMENT OF N_{λ}

§12.1 A description of N_{λ}
§12.2 A sequence $\xi(w,r)$ beginning with an element of H_{λ}
§12.3 The deletion map $d(\lambda,m)$
12.4 The subset $\tilde{H}_{\lambda, k}$ of $\tilde{\sigma}^{-1}(\lambda)$

12.5 The sequence $\xi(\tilde{w}, k)$ beginning with $\tilde{w} \in \tilde{N}_\lambda$

12.6 The sequence $\xi(w, k)$ beginning with $w \in N_\lambda$

12.7 Antichains

12.8 The D-function

CHAPTER 13 : RAISING OPERATIONS ON LAYERS

13.1 Reflective pairs

13.2 Raising operations on layers

13.3 Proof of Proposition 13.2.3 when $1 < u < \lambda$

13.4 Proof of Proposition 13.2.3 when $\lambda_{k+1} < u < \lambda_k$ and $1 < k < r$

CHAPTER 14 : THE LEFT AND RIGHT CELLS IN $\sigma^{-1}(\lambda)$

14.1 The map T from N_λ to the set of λ-tabloids

14.2 The set N_λ of principal normalized elements

14.3 The subset X_λ of N_λ

14.4 The number of left cells in $\sigma^{-1}(\lambda)$

CHAPTER 15 : $\sigma^{-1}(\lambda)$ IS AN RL-EQUIVALENCE CLASS OF A_n

CHAPTER 16 : LEFT CELLS ARE CHARACTERIZED BY THE GENERALIZED RIGHT τ-INVARIANT

16.1 Left cells are characterized by the generalized right τ-invariant

16.2 The standard parabolic subgroup P_n

CHAPTER 17 : THE TWO-SIDED CELLS OF THE AFFINE WEZL GROUP A_n

CHAPTER 18 : SOME PROPERTIES OF CELLS AND OTHER EQUIVALENCE CLASSES OF A_n

18.1 The commutativity between a left star operation and a right star operation

18.2 Connectedness of cells and other equivalence classes of A_n

18.3 The intersection of a left cell with a right cell in A_n

CHAPTER 19 : SOME SPECIAL KINDS OF SIGN TYPES

19.1 Coxeter sign types and generalized tabloids

19.2 Three maps $\hat{\tau}$, f, ϕ and their relations

19.3 Two kinds of actions on the set C

19.4 The map $\hat{\tau} : A_n \to \hat{C}$

19.5 Dominant sign types and dominant tabloids

19.6 Special sign types and special tabloids