Table of Contents

Preface v
Table of Contents xi
Contributors xxi

Ch. 1. Discriminant Analysis for Time Series 1
R. H. Shumway

1. Introduction 1
2. Time domain classification methods 5
3. Discriminant analysis in the frequency domain 11
4. Statistical characterization of patterns 26
5. An application to seismic discrimination 33
6. Discussion 42
 Acknowledgment 43
 References 43

Ch. 2. Optimum Rules for Classification into Two Multivariate Normal Populations with the Same Covariance Matrix 47
S. Das Gupta

1. Introduction 47
2. The univariate case 49
3. Multivariate case: \(\Sigma \) known 54
4. Multivariate case: \(\Sigma \) unknown 56
5. Multivariate case: \(\mu_1 \) and \(\mu_2 \) known 58
 References 60

Ch. 3. Large Sample Approximations and Asymptotic Expansions of Classification Statistics 61
M. Siotani

1. Introduction 61
2. Statistics of classification into one of two multivariate normal populations with a common covariance matrix 62
3. Statistics of classification into one of two multivariate normal populations with different covariance matrices 83
4. Statistics in the non-normal case and in the discrete case 90
 References 97

Ch. 4. Bayesian Discrimination 101
 S. Geisser
 1. Introduction 101
 2. Bayesian allocation 101
 3. Multivariate normal allocation 106
 4. Bayesian separation 109
 5. Allocatory–separatory compromises 111
 6. Semi-Bayesian multivariate normal applications 112
 7. Semi-Bayesian sample reuse selection and allocation 118
 8. Other arcs 119
 References 120

Ch. 5. Classification of Growth Curves 121
 J. C. Lee
 1. Introduction 121
 2. Preliminaries 122
 3. Classification into one of two growth curves 123
 4. Bayesian classification of growth curves 125
 5. Arbitrary p.d. Σ 125
 6. Rao’s simple structure 132
 References 136

Ch. 6. Nonparametric Classification 139
 J. D. Broffitt
 1. Introduction 139
 2. A procedure for partial and forced classification based on ranks of discriminant scores 144
 3. Robust discriminant functions 153
 4. Nonparametric discriminant functions 159
 References 167

Ch. 7. Logistic Discrimination 169
 J. A. Anderson
 1. Introduction 169
 2. Logistic discrimination: Two groups 170
 3. Maximum likelihood estimation 175
 4. An example: The preoperative prediction of postoperative deep vein thrombosis 180
 5. Developments of logistic discrimination: Extensions 182
 6. Logistic discrimination: Three or more groups 187
 7. Discussion: Recent work 189
 References 191
Table of Contents

Ch. 8. Nearest Neighbor Methods in Discrimination 193
 L. Devroye and T. J. Wagner

 References 196

Ch. 9. The Classification and Mixture Maximum Likelihood Approaches to Cluster Analysis 199
 G. J. McLachlan

 1. Introduction 199
 2. Classification approach 201
 3. Mixture approach 202
 4. Efficiency of the mixture approach 204
 5. Unequal covariance matrices 205
 6. Unknown number of subpopulations 206
 7. Partial classification of sample 206
 References 207

Ch. 10. Graphical Techniques for Multivariate Data and for Clustering 209
 J. M. Chambers and B. Kleiner

 1. Graphics and multivariate analysis 209
 2. Displays for multivariate data 210
 3. Plots for clustering 226
 4. Summary and conclusions 243
 References 244

Ch. 11. Cluster Analysis Software 245
 R. K. Blashfield, M. S. Aldenderfer and L. C. Morey

 1. Major categories of cluster analysis software 247
 2. Programs with hierarchical methods 249
 3. Programs with iterative partitioning methods 254
 4. Special purpose programs 258
 5. Usability of cluster analysis software 260
 6. Discussion 263
 References 264

Ch. 12. Single-link Clustering Algorithms 267
 F. J. Rohlf

 1. Introduction 267
 2. Notation and definitions 268
 3. Algorithms 270
 Acknowledgment 282
 References 282
Ch. 13. Theory of Multidimensional Scaling 285
 J. de Leeuw and W. Heiser

1. The multidimensional scaling problem 285
2. Multidimensional scaling models 291
3. Multidimensional scaling algorithms 303
 References 311

Ch. 14. Multidimensional Scaling and its Applications 317
 M. Wish and J. D. Carroll

1. Multidimensional scaling of two-way data 317
2. Multidimensional scaling of three-way data 327
3. Recent developments and future trends 341
 References 342

Ch. 15. Intrinsic Dimensionality Extraction 347
 K. Fukunaga

1. Introduction 347
2. Intrinsic dimensionality for representation 348
3. Intrinsic dimensionality for classification 353
 References 359

Ch. 16. Structural Methods in Image Analysis and Recognition 361
 L. N. Kanal, B. A. Lambird and D. Lavine

1. Introduction 361
2. Syntactic pattern recognition 362
3. Artificial intelligence 371
4. Relaxation 379
 Acknowledgment 381
 References 381

Ch. 17. Image Models 383
 N. Ahuja and A. Rosenfeld

1. Introduction 383
2. Pixel based models 383
3. Region based models 393
4. Discussion 394
 Acknowledgment 395
 References 395

Ch. 18. Image Texture Survey 399
 R. M. Haralick

1. Introduction 399
2. Review of the literature on texture models 400
3. Structural approaches to texture models 406
4. Conclusion 412
 References 412

Ch. 19. Applications of Stochastic Languages 417

 K. S. Fu

 1. Introduction 417
 2. Review of stochastic languages 417
 3. Application to communication and coding 423
 4. Application to syntactic pattern recognition 427
 5. Application to error-correcting parsing 430
 6. Stochastic tree grammars and languages 433
 7. Application of stochastic tree grammars to texture modelling 441
 8. Conclusions and remarks 446
 References 447

Ch. 20. A Unifying Viewpoint on Pattern Recognition 451

 J. C. Simon, E. Backer and J. Sallentin

 0. Introduction 451
 1. Representations and interpretations 451
 2. Laws and uses of similarity 460
 3. Conclusion 475
 References 476

Ch. 21. Logical Functions in the Problems of Empirical Prediction 479

 G. S. Livov

 0. Introduction 479
 1. Requirements for a class of decision rules 480
 2. Class of logical decision rules 483
 3. Method of predicting object's perspectiveness 486
 4. Algorithm of predicting the value of quantitative feature 487
 5. Automatic grouping of objects 488
 6. Method of dynamic prediction 490
 References 491

Ch. 22. Inference and Data Tables with Missing Values 493

 N. G. Zagoruiko and V. N. Yolkina

 1. Algorithm ZET 493
 2. Algorithm VANGA 495
 3. Conclusion 500
 References 500

Ch. 23. Recognition of Electrocardiographic Patterns 501

 J. H. van Bemmel

 1. Introduction 501
 2. Electrocardiology 502
Table of Contents

3. Detection 505
4. Typification 513
5. Boundary recognition 517
6. Feature selection and classification 520
7. Data reduction 523
8. Discussion 524
 References 524

Ch. 24. Waveform Parsing Systems 527

 G. C. Stockman

1. Introduction 527
2. Models for waveform analysis: SDL and FDL 529
3. The HEARSAY speech understanding system 535
4. Analysis of medical waveforms using WAPSYS 537
5. Concluding discussion 546
 References 548

Ch. 25. Continuous Speech Recognition: Statistical Methods 549

 F. Jelinek, R. L. Mercer and L. R. Bahl

1. Introduction 549
2. Acoustic processors 551
3. Linguistic decoder 551
4. Markov source modeling of speech processes 552
5. Viterbi linguistic decoding 558
6. Stack linguistic decoding 560
7. Automatic estimation of Markov source parameters from data 562
8. Parameter estimation from insufficient data 564
9. A measure of difficulty for finite state recognition tasks 569
10. Experimental results 570
 Acknowledgment 572
 References 573

Ch. 26. Applications of Pattern Recognition in Radar 575

 A. A. Grometstein and W. H. Schoendorf

1. Introduction 575
2. A radar as an information-gathering device 575
3. Signature 576
4. Coherence 577
5. Polarization 577
6. Frequency diversity 577
7. Pulse sequences 578
8. Decisions and decision errors 579
9. Algorithm implementation 579
10. Classifier design 580
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>White Blood Cell Recognition</td>
<td>595-603</td>
</tr>
<tr>
<td>E. S. Gelsema and G. H. Landeweerd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>595</td>
<td></td>
</tr>
<tr>
<td>2. Experiments on the automation of the WBCD</td>
<td>596</td>
<td></td>
</tr>
<tr>
<td>3. Developments in the commercial field</td>
<td>603</td>
<td></td>
</tr>
<tr>
<td>4. Conclusions</td>
<td>606</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>607</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Pattern Recognition Techniques for Remote Sensing Applications</td>
<td>609-620</td>
</tr>
<tr>
<td>P. H. Swain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Introduction: The setting</td>
<td>609</td>
<td></td>
</tr>
<tr>
<td>2. The rationale for using statistical pattern recognition</td>
<td>611</td>
<td></td>
</tr>
<tr>
<td>3. A typical data analysis procedure</td>
<td>611</td>
<td></td>
</tr>
<tr>
<td>4. The Bayesian approach to pixel classification</td>
<td>612</td>
<td></td>
</tr>
<tr>
<td>5. Clustering</td>
<td>613</td>
<td></td>
</tr>
<tr>
<td>6. Dimensionality reduction</td>
<td>615</td>
<td></td>
</tr>
<tr>
<td>7. An extension of the basic pattern recognition approach</td>
<td>616</td>
<td></td>
</tr>
<tr>
<td>8. Research directions</td>
<td>619</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>620</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Optical Character Recognition—Theory and Practice</td>
<td>621-647</td>
</tr>
<tr>
<td>G. Nagy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>621</td>
<td></td>
</tr>
<tr>
<td>2. OCR problem characterization</td>
<td>622</td>
<td></td>
</tr>
<tr>
<td>3. Applications</td>
<td>623</td>
<td></td>
</tr>
<tr>
<td>4. Transducers</td>
<td>628</td>
<td></td>
</tr>
<tr>
<td>5. Character acquisition</td>
<td>631</td>
<td></td>
</tr>
<tr>
<td>6. Character classification</td>
<td>634</td>
<td></td>
</tr>
<tr>
<td>7. Context</td>
<td>639</td>
<td></td>
</tr>
<tr>
<td>8. Error/reject rates</td>
<td>643</td>
<td></td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>647</td>
<td></td>
</tr>
<tr>
<td>Bibliography</td>
<td>647</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Computer and Statistical Considerations for Oil Spill Identification</td>
<td>651-669</td>
</tr>
<tr>
<td>Y. T. Chien and T. J. Killeen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>651</td>
<td></td>
</tr>
<tr>
<td>2. Methods for oil data analysis</td>
<td>652</td>
<td></td>
</tr>
<tr>
<td>3. Computational models for oil identification</td>
<td>663</td>
<td></td>
</tr>
<tr>
<td>4. Summary of oil identification research</td>
<td>668</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>669</td>
<td></td>
</tr>
</tbody>
</table>
Ch. 31. Pattern Recognition in Chemistry 673
B. R. Kowalski and S. Wold

1. Introduction 673
2. Formulation of chemical problems in terms of pattern recognition 675
3. Historical development of pattern recognition in chemistry 677
4. Types of chemical data and useful preprocessing methods 677
5. Pattern recognition methods used 682
6. Some selected chemical applications 685
7. Problems of current concern 689
8. Present research directions 693
9. Conclusions and prognosis 694
References 695

Ch. 32. Covariance Matrix Representation and Object–Predicate Symmetry 699
T. Kaminuma, S. Tomita and S. Watanabe

1. Historical background 699
2. Covariance representation 700
3. Minimum entropy principle 702
4. SELFIC 705
5. Object–predicate reciprocity 706
6. Applications to geometric patterns 707
7. Schmidt's theory of unsymmetric kernels 716
8. Conclusion 718
 Acknowledgment 719
References 719

Ch. 33. Multivariate Morphometrics 721
R. A. Reyment

1. Introduction 721
2. Variation in a single sample 724
3. Homogeneity and heterogeneity of covariance matrices 726
4. Size and shape 728
5. Significance tests in morphometrics 729
6. Comparing two or more groups 730
7. Morphometrics and ecology 738
8. Growth-free canonical variates 738
9. Applications in taxonomy 743
References 743

Ch. 34. Multivariate Analysis with Latent Variables 747
P. M. Bentler and D. G. Weeks

1. Introduction 747
2. Moment structure models: A review 751
3. A simple general model 757
4. Parameter identification 760
Table of Contents

5. Estimation and testing: Statistical basis 761
6. Estimation and testing: Nonlinear programming basis 764
7. Conclusion 767
 References 768

Ch. 35. Use of Distance Measures, Information Measures and Error Bounds in Feature Evaluation 773
M. Ben-Bassat

1. Introduction: The problem of feature evaluation 773
2. Feature evaluation rules 774
3. What is wrong with the P_e rule 776
4. Ideal alternatives for the P_e rule do not generally exist 777
5. Taxonomy of feature evaluation rules 778
6. The use of error bounds 785
7. Summary 787
 References 788

Ch. 36. Topics in Measurement Selection 793
J. M. Van Campenhout

1. Introduction 793
2. The monotonicity of the Bayes risk 796
3. The arbitrary relation between probability of error and measurement subset 800
 References 803

Ch. 37. Selection of Variables Under Univariate Regression Models 805
P. R. Krishnaiah

1. Introduction 805
2. Preliminaries 806
3. Forward selection procedure 806
4. Stepwise regression 809
5. Backward elimination procedure 811
6. Overall F test and methods based on all possible regressions 814
7. Finite intersection tests 817
 References 819

Ch. 38. On the Selection of Variables Under Regression Models Using Krishnaiah’s Finite Intersection Tests 821
J. L. Schmidhammer

1. Introduction 821
2. The multivariate F distribution 821
3. The finite intersection test—A simultaneous procedure in the univariate case 823
4. The finite intersection test—A simultaneous procedure in the multivariate case 826
5. A univariate example 828
6. A multivariate example 830
 References 833
Ch. 39. Dimensionality and Sample Size Considerations in Pattern Recognition Practice 835
 A. K. Jain and B. Chandrasekaran

1. Introduction 835
2. Classification performance 836
3. K-nearest neighbor procedures 849
4. Error estimation 850
5. Conclusions 851
 References 852

Ch. 40. Selecting Variables in Discriminant Analysis for Improving upon Classical Procedures 857
 W. Schaaafsma

1. Introduction 857
2. Illustrating the phenomenon when dealing with Aim 1 in the case k = 2 860
3. One particular rule for selecting variables 864
4. Dealing with Aim 3 in the case k = 2, m_0 = 1 868
5. Dealing with Aim 4 in the case k = 2, m_0 = 1 872
6. Incorporating a selection of variables technique when dealing with Aim 3 or Aim 4 in the case k = 2, m_0 = 1 875
7. Concluding remarks and acknowledgment 877
 Appendix A 878
 References 881

Ch. 41. Selection of Variables in Discriminant Analysis 883
 P. R. Krishnaiah

1. Introduction 883
2. Tests on discriminant functions using conditional distributions for two populations 883
3. Tests on discriminant functions for several populations using conditional distributions 885
4. Tests for the number of important discriminant functions 886
 References 891

Corrections to Handbook of Statistics, Volume 1: Analysis of Variance 893

Subject Index 895