Contents

1 Principles of mechanics applied to lumps of fluid
 1.1 Elementary mechanics of a fluid in equilibrium 1
 1.2 Flow through a contraction in a horizontal pipe 3
 1.3 The total head of a steady stream 5
 1.4 Reaction forces on pipes carrying flows 8
 1.5 Loss of total head at an abrupt expansion 10

2 Velocity fields and pressure fields 13
 2.1 Critical description of a mathematical model 13
 2.2 The pressure field and its gradient 16
 2.3 The velocity field and streamlines 20
 2.4 The solenoidal property 24

3 Equations of motion 29
 3.1 Rate of change following a particle 29
 3.2 Acceleration of a particle of fluid 31
 3.3 Momentum principle for a particle 33
 3.4 Boundary conditions 34
 3.5 Some properties of steady flows 38

4 Vorticity fields 43
 4.1 Analysis of instantaneous deformation of a particle 43
 4.2 Vorticity 45
 4.3 Rate of strain 47
 4.4 Vortextubes 52
 4.5 Circulation 54

5 Vortex dynamics 59
 5.1 The persistence of circulation 59
 5.2 The movement of vortexlines 61
 5.3 Irrotational flow 64
 5.4 Line vortices and vortex sheets 66
x Contents

5.5 Boundary layers 71
5.6 Separation 75

6 General properties of irrotational flows 80
 6.1 Pressure and velocity potential 80
 6.2 Uniqueness of irrotational flow in simply connected regions 84
 6.3 Related results for flows of given vorticity 88
 6.4 Supplementary condition for uniqueness in doubly connected regions 93

7 Three-dimensional examples of irrotational flows 97
 7.1 Laplace's equation in three dimensions 97
 7.2 Spherically symmetrical motions 99
 7.3 Axisymmetrical fairings 106
 7.4 Drag of streamlined bodies 110
 7.5 Bluff-body flows 114

8 Three-dimensional far fields 122
 8.1 Spherical means and Green's formula 123
 8.2 Source and dipole far fields 129
 8.3 Energy, impulse, and added mass 133
 8.4 Moments applied by steady irrotational flows 140
 8.5 Drag with a wake 145

9 Two-dimensional irrotational flows 150
 9.1 Two-dimensional regions embedded within three-dimensional flows 150
 9.2 The complex potential 155
 9.3 The method of conformal mapping 160
 9.4 Conformal mapping exemplified 165

10 Flows with circulation 174
 10.1 Rotating cylinders 175
 10.2 Aerofoils at incidence 182
 10.3 Forces on aerofoils 191
11 Wing theory 200
 11.1 Trailing vorticity 200
 11.2 Impulse of a vortex system 207
 11.3 Lift and induced drag 215
 11.4 Wings and winglike surfaces in engineering and nature 228

Exercises 243

Index 255