Contents

CHAPTER I Descriptive Principal Components Analysis and Singular Value Decomposition 1

I.1 Introduction 1
 I.1.1 Scope of the Method 2
 I.1.2 A Geometric Interpretation of Principal Components Analysis 3

I.2 General Analysis 4
 I.2.1 Fitting the Data Points in \mathbb{R}^p 4
 I.2.2 Relationship Between Fit in \mathbb{R}^p and \mathbb{R}^n 6
 I.2.3 Recreating the Original Data 8

I.3 Applying Principal Components Analysis 10
 I.3.1 Analysis in \mathbb{R}^p 10
 I.3.2 Analysis in \mathbb{R}^n 12
 I.3.3 Supplementary Variables and Supplementary Individuals 14
 I.3.4 Nonparametric Analysis 16

I.4 Implementation of Principal Components Analysis 18
 I.4.1 Presentation and Interpretation of Results 18
 I.4.2 Example 20

I.5 Mathematical Appendix 26

CHAPTER II Correspondence Analysis 30

II.1 Geometry of the Configuration of Points and Goodness of Fit Criterion 31
 II.1.1 Construction of the Configuration 31
CONTENTS

II.1.2 Choice of Distances 34
II.1.3 Choice of Goodness of Fit Criterion 36
II.1.4 Summary 36

II.2 Calculation of Principal Axes and Coordinates 37
II.2.1 General Analysis with Any Distance and Any Criteria 38
II.2.2 Analysis in \mathbb{R}^p, Calculation of Factors 39
II.2.3 Relationship with Analysis in \mathbb{R}^n 40
II.2.4 Supplementary Elements 41
II.2.5 Another Aspect of Correspondence Analysis—Finding the Best Simultaneous Representation 43

II.3 Interpretation of Results 44
II.3.1 Introduction 44
II.3.2 Calculation of Absolute Contributions and Squared Correlations 46

II.4 An Application Example 49
II.4.1 Data 49
II.4.2 Results and Interpretation 51

II.5 Computations 58
II.5.1 Analysis with Respect to the Center of Gravity 58
II.5.2 Symmetrization of S 60

CHAPTER III Canonical Analysis and Discriminant Analysis—Theoretical and Technical Considerations: A Brief Review 63

III.1 Canonical Analysis 63
III.1.1 Notation and Formulation of the Problem 64
III.1.2 Calculation of the Canonical Variables 65

III.2 Discriminant Analysis 69
III.2.1 Formulation of Problem 70
III.2.2 Calculation of the Linear Discriminant Functions 73
III.2.3 Relationship with Canonical Analysis 74
CHAPTER IV Multiple Correspondence Analysis 81

IV.1 Definitions and Notation 81
 IV.1.1 Notation 82
 IV.1.2 Burt's Table Associated with Z 84

IV.2 Two Questions
 (Two-Way Correspondence) 84
 IV.2.1 First Equivalence 84
 IV.2.2 Second Equivalence 86

IV.3 Generalization to More Than Two Questions 88

IV.4 Properties of Multiple Analyses 91
 IV.4.1 φ_q Components Are Centered 92
 IV.4.2 Proportion of Variance Due to One Question and to One Category 92
 IV.4.3 Dimensionality of the Configuration of the p Categories in \mathbb{R}^n 93
 IV.4.4 Best Simultaneous Representation 94
 IV.4.5 Confidence Interval of a Supplementary Category 94

IV.5 Two Special Cases 95
 IV.5.1 All the Questions Have Two Categories 96
 IV.5.2 The Case Where Multiple Analysis Is Reduced to a Two-Way Analysis 97

IV.6 Example: Survey Processing 99
 IV.6.1 Operational Survey Procedures 99
 IV.6.2 An Example of "Predictive Map" 100

CHAPTER V Automatic Classification—Clustering Techniques Used with Principal Axes Methods 109

V.1 Introduction—Classification and Principal Axes Methods 109

V.2 Clustering Around Moving Centers 111
 V.2.1 Theoretical Basis of the Algorithm 112
V.2.2 Elementary Rationale for the Algorithm 114
V.2.3 Related Techniques 115
V.2.4 Stable Clusters 116

V.3 Hierarchical Classification 117
V.3.1 Introduction 117
V.3.2 Single Linkage Classification and Minimum Spanning Tree 120
V.3.3 Minimum Variance Algorithms and Related Techniques 125

V.4 Reciprocal Neighbors—Chain Search Algorithm 128
V.4.1 Algorithm 128
V.4.2 Remarks 129

V.5 Mixed Methods for Large Data Sets 130
V.5.1 Preliminary Partition 130
V.5.2 Hierarchical Aggregation of the Stable Groups 130
V.5.3 Final Partition, and Description of Classes 130
V.5.4 Comments on Classification Strategy 132

V.6 Classification Example 132
V.6.1 Data 132
V.6.2 Classification Strategy 133
V.6.3 Description of the Groups 137

V.7 Appendix: Equivalence Between Single Linkage and Subdominant Ultrametric 143
V.7.1 Definition of the Distance of the Smallest Maximum Jump 143
V.7.2 Demonstration that \(d^* \) Is an Ultrametric Distance 143
V.7.3 Demonstration that \(d^* \) Is the Subdominant 144
V.7.4 Equivalence of \(d^* \) and \(d_u \) 144

CHAPTER VI Direct Reading Algorithms 146
VI.1 Reduction in the Number of Operations 146
VI.1.1 General Case 146
VI.1.2 The Case of Partitioning Algorithms 147
VI.2 Simultaneous Iterated Power Algorithm 148
 VI.2.1 First Decomposition of Matrix A (Reciprocal Averaging) 149
 VI.2.2 Second Decomposition of Matrix A 149

VI.3 Stochastic Approximation 151
 VI.3.1 Definitions and Notation 151
 VI.3.2 Convergence of the Algorithm 152
 VI.3.3 Comparison with Iterated Power 156

VI.4 Performing the Calculations 157

VI.5 Technical Appendix 158
 VI.5.1 Proof of Lemma 1 158
 VI.5.2 Discussion of Back-and-Forth Readings 159
 VI.5.3 Simultaneous Determination of q Principal Axes 159
 VI.5.4 Numerical Example 161

CHAPTER VII Reliability and Significance of Results 162

VII.1 Which Data Matrices Should We Analyze? How Do We Construct Them? 162

VII.2 What Can We Expect from Multivariate Descriptive Statistical Analysis? 164
 VII.2.1 Technical Advantages 164
 VII.2.2 Fundamental Advantages 165

VII.3 How Do We Evaluate the Quality of the Configurations? 166
 VII.3.1 Hypothesis of Independence 166
 VII.3.2 Percentage of Variance and Information 173
 VII.3.3 Stability of the Patterns 176
 VII.3.4 Confidence Areas for Points on Graphical Displays 182

VII.4 Appendix 1: Eigenvalues and Percentages of Variance in Correspondence Analysis 187
 VII.4.1 An Approximation of the Distribution of the Eigenvalues 187
 VII.4.2 Independence of the Percentages of Variance and of the Trace 189

VII.5 Appendix 2: Information and Eigenvalues 190

CHAPTER VIII A Computer Program: Correspondence Analysis for Large Matrices 193
CONTENTS

VIII.1 Main Features of the Program 193
VIII.2 Parameters 193
 VIII.2.1 Storage Requirements for CORAN 196
VIII.3 Technical Remarks 197
 VIII.3.1 Principal Computational Steps 197
 VIII.3.2 Possible Simplification of the Program 197
VIII.4 Comments on the Output Example 197
VIII.5 Test Data 198
VIII.6 Output Example 199

References 223

Index 229