Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTATION</td>
<td>xvii</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Basis of Least Square Theory</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Summary of Least Square Algorithms and Associated Applications</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Estimation by Least Squares and other Methods</td>
<td>7</td>
</tr>
<tr>
<td>1.3.1 MAP Estimation, 9</td>
<td></td>
</tr>
<tr>
<td>1.3.2 ML Estimation, 9</td>
<td></td>
</tr>
<tr>
<td>Part 1 Mathematical Formulations of the Least Square Error Algorithms</td>
<td></td>
</tr>
<tr>
<td>2 INTRODUCTION TO LEAST SQUARES THEORY</td>
<td>15</td>
</tr>
<tr>
<td>2.1 Classical Least Squares</td>
<td>15</td>
</tr>
<tr>
<td>2.1.1 Derivation of Fourier Series Coefficients by Differentiation</td>
<td>16</td>
</tr>
<tr>
<td>2.1.2 Derivation of Fourier Series Coefficients by Orthogonality Principle</td>
<td>18</td>
</tr>
<tr>
<td>2.1.3 Evaluation of the Minimum Average Square Error</td>
<td>18</td>
</tr>
<tr>
<td>2.1.4 Orthogonal Function Expansions</td>
<td>19</td>
</tr>
<tr>
<td>2.2 Least Squares Optimization in Hilbert Space</td>
<td>20</td>
</tr>
<tr>
<td>2.2.1 Hilbert Space Definition, 20</td>
<td></td>
</tr>
<tr>
<td>2.2.2 Generalized Orthogonal Function Expansion, 24</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

2.3 Orthogonality Principle in Hilbert Space
 2.3.1 Geometric Interpretation of Orthogonality Principle, 25
 2.3.2 Gram-Schmidt Orthogonalization Procedure, 27
 2.3.3 Formal Theory of Optimization in Hilbert Space, 28

3 LEAST SQUARE ESTIMATION ALGORITHMS—PART I

3.1 Durbin Algorithm
 3.1.1 Model Description, 40
 3.1.2 Derivation of Yule-Walker Equations by Differentiation, 42
 3.1.3 Derivation of Yule-Walker Equations by Orthogonality Principle, 43
 3.1.4 Durbin Recursive Solution, 44

3.2 Levinson Algorithm
 3.2.1 Model Description, 49
 3.2.2 Derivation of Normal Equations by Differentiation, 49
 3.2.3 Derivation of Normal Equations by the Orthogonality Principle, 50
 3.2.4 Levinson Recursive Solution, 51

3.3 Cholesky Decomposition Algorithm

3.4 Autocorrelation Coefficients Computational Methods

3.5 Forward and Backward Prediction
 3.5.1 Model Description, 66
 3.5.2 Lattice Structure with Known Autocorrelation Coefficients, 69
 3.5.3 Burg Algorithm, 70

4 LEAST SQUARE ESTIMATION ALGORITHMS—PART II

4.1 Recursive Least Squares Lattice Algorithms
 4.1.1 Model Description, 80
 4.1.2 Order Update for Coefficients, 84
 4.1.3 Order Update for Minimum Mean Square Error, 90
 4.1.4 Error Updates, 91
 4.1.5 Time Update, 93
5 LEAST SQUARE ESTIMATION ALGORITHMS—PART III

5.1 Simple Least-Squares Estimation

5.2 Minimum Variance Weighted Least Squares (Gauss-Markov)

5.3 Minimum Variance Least Squares (Kalman)
 5.3.1 Kalman Recursive Estimation Algorithm, 117
 5.3.2 Derivation of Kalman Recursive Estimation Algorithm Using the Loss Function, 120

5.4 Square Root Kalman Algorithm
 5.4.1 U-D Factorization, 126
 5.4.2 Mathematical Development of U-D Kalman Algorithm, 126
 5.4.3 Summary of U-D Kalman Algorithm, 135

Part 2 Application of Least Square Analysis to Digital Signal Processing

6 EQUALIZATION

6.1 Discrete Model of a Continuous-Time Communication System

6.2 Wireline and Radio Channels

6.3 Equalization Techniques
 6.3.1 Linear Equalization Using Transversal Filters, 148
 6.3.2 Decision-Feedback Equalization, 150
 6.3.3 Adaptive Equalization Techniques, 152
 6.3.3.1 Steepest Descent Method, 153
 6.3.3.2 Lattice Structure Method for Linear Equalization, 154
 6.3.3.3 Gradient Lattice Structure for Linear Equalization, 162
6.3.3.4 Lattice Structure for Decision Feedback Equalization, 164
6.3.3.5 Kalman Method, 170

6.4 Equalizer Performance Examples

6.4.1 Linear Equalizer Performance Examples, 175
6.4.1.1 Telephone Channel Example, 175
6.4.1.2 Multipath Radio Channel Example, 184

6.4.2 Decision Feedback Equalizer Performance Examples, 198
6.4.2.1 Troposcatter Channel Example, 198
6.4.2.2 HF Channel Example, 207

6.4.3 Performance of Lattice Structures, 223

Appendix Derivation of Recursive Equations Needed in Gradient Lattice Structure for Linear Equalization

7 POWER SPECTRAL ESTIMATION

7.1 Historical Overview

7.2 Traditional Power Spectral Estimation Technique
7.2.1 Power Spectrum Estimation Using Periodogram Methods, 244

7.3 Autoregressive Method
7.3.1 AR Technique, 250
7.3.2 Durbin Method, 253
7.3.3 Selection of the Order of the Prediction Filter, 254

8 DIGITAL WHITENING IN SPREAD SPECTRUM (SS) COMMUNICATIONS

8.1 Introduction

8.2 Overview of Spread Spectrum Communications

8.3 Augmentation of PN Spread Spectrum Communications with Digital Whitening

8.4 SS Communication System Model with Digital Whitening

8.5 Digital Whitening Algorithms

8.6 Decision Variable for Digitally Whitened SS Communication System
8.6.1 Moments of the PN Correlator Output without Digital Whitening, 275
8.6.2 Moments of the PN Correlator Output with Digital Whitening, 277
8.6.3 SNR Improvement Factor, 278
8.6.4 Bit Error Rate Computations, 279

8.7 Digital Whitening Performance Results 280
8.8 Performance Bound for SNR Improvement Factor 286

9 ADAPTIVE ARRAYS 292

9.1 Adaptive Array Techniques 292
9.2 General Configurations of Adaptive Arrays 293
9.3 Spatial Adaptive Signal Processing Techniques 295
9.4 Adaptive Array Experimental Results of Riegler and Compton 296
9.5 Mathematical Model for the Transmitted and Received Signals in Spread Spectrum Array Processing Applications 303
9.6 Adaptive Antenna Interference Cancellers 306
9.7 Baseband Antenna Array Combining Techniques 313
 9.7.1 Minimum Mean Square Error (MSE) Diversity Antenna Combining Technique with Independent Gaussian Noise, 314
 9.7.2 Minimum Mean Square Error (MSE) Diversity Antenna Combining Technique with Colored Gaussian Noise, 316

9.8 Error Rate Performance 319
9.9 Minimum MSE Algorithms 326
9.10 Computer Simulation for Speed of Convergence with Minimum MSE Algorithms 330

Appendix Minimum Mean Square Error (MSE) Diversity Antenna Combining Technique with Jointly Stationary Gaussian Noise Processes 332

10 DUAL-CHANNEL INTERFERENCE MITIGATION 335

10.1 Dual-Channel Digital Signal Transmission Model 336
10.2 Reduction of Interchannel Interference by the MSE Algorithm 336
10.3 Performance Results 338

Appendix Derivation of Weights for Interchannel Interference Mitigation 341
CONTENTS

11 LEAST SQUARES TECHNIQUES IN DIGITAL SPEECH PROCESSING 343

11.1 Introduction 343
11.2 Speech Production Model and Speech Characteristics 344
11.3 Speech Coding Techniques 346
11.4 Linear Prediction of Speech 347
 11.4.1 Speech Analysis, 350
 11.4.1.1 Estimation of Predictor Coefficients by Covariance Method, 351
 11.4.1.2 Estimation of Prediction Coefficients by Correlation Method, 352
 11.4.1.3 Stability Considerations in the Correlation Method, 353
 11.4.1.4 Pitch Estimation, 355
 11.4.1.5 Voiced/Unvoiced Switch Estimation, 356
 11.4.1.6 Gain Computation, 356
 11.4.2 Speech Synthesis, 356

11.5 Time Domain Waveform Coding of Speech Signals 358
 11.5.1 Pulse Code Modulation (PCM), 358
 11.5.2 Differential Pulse Code Modulation (DPCM), 362
 11.5.3 Delta Modulation, 372
 11.5.4 Adaptive Predictive Coding (APC), 376
 11.5.5 Comparison of Speech Encoding Techniques, 382
 11.5.6 Additional Linear Prediction Algorithms, 383

11.6 Image Processing 383

APPENDIX: PRINCIPAL MATHEMATICAL RESULTS 386

INDEX 405