CONTENTS

0. READING GUIDE

I. ELEMENTARY PRACTICE OF NON-的标准 ANALYSIS

Lesson 0 (quite classic) Infinitesimals................................. 1
Lesson 1 (with a slight non-standard flavour) Limits.................. 2
Lesson 2 (entirely non-standard) Continuity............................ 5
Lesson 3 Uniform continuity... 7
Lesson 4 Derivatives and integrals.................................... 9
Lesson 5 Differentiability.. 11
Lesson 6 Some notions of topology in \(\mathbb{R} \)......................... 15
Lesson 7 More real topology.. 19
Lesson 8 From \(\mathbb{Q} \) to \(\mathbb{R} \)... 21
Lesson 9 Digression on upper-bounded parts............................ 24
Lesson 10 Internal sequences.. 28
Lesson 11 From \(*\mathbb{Q} \) we may extract \(\mathbb{R} \)....................... 30

PLAYTIME

II. LOGICAL FOUNDATIONS OF NON-标准 ANALYSIS

Lesson 1 A review of the foundations : Z. F.......................... 38
Lesson 2 To be natural or not to be..................................... 46
Lesson 3 A non-standard extension of Z. F............................. 48
Lesson 4 Looking for enlargements in Z. F............................. 51
Lesson 5 Weak enlargements and ultrafilters........................... 58
Lesson 6 Enlargements in Z.F.C... 61
Lesson 7 Internal set theory.. 66

III. SOME CLASSICAL TOPICS FROM A NON-标准 POINT OF VIEW

Lesson 1 General topology... 80
Lesson 2 Internal set theory with external sets....................... 87
Lesson 3 Compactness.. 92
Lesson 4 Metric Spaces within I.S.T.E................................. 94
Lesson 5 Functional sequences... 99
Lesson 6 Some exercises to get supple.................................. 101
Lesson 7 Integral curves of vector fields on \(\mathbb{R}^p \).................. 107
Lesson 8 The inverse function theorem.................................. 112
Lesson 9 Infinitesimal transformations and vector fields on
 manifolds.. 114
Lesson 10 Some intermediate objects in differential and
 algebraic topology.. 119
Lesson 11 Holomorphic functions....................................... 123
IV. NON STANDARD ANALYSIS AS A TOOL IN PERTURBATION PROBLEMS

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Introduction and check-list of the tools</td>
<td>126</td>
</tr>
<tr>
<td>1</td>
<td>Perturbations of algebraic equations</td>
<td>132</td>
</tr>
<tr>
<td>2</td>
<td>Perturbations of linear operators</td>
<td>136</td>
</tr>
<tr>
<td>3</td>
<td>Perturbations of Lie algebra structures</td>
<td>140</td>
</tr>
<tr>
<td>4</td>
<td>Deformations of Lie algebra structures</td>
<td>146</td>
</tr>
<tr>
<td>5</td>
<td>Slow-fast flows in the plane</td>
<td>156</td>
</tr>
<tr>
<td>6</td>
<td>Boundedness of integral curves in equation</td>
<td>166</td>
</tr>
<tr>
<td>7</td>
<td>Relaxation oscillations in Van der Pol's equation</td>
<td>168</td>
</tr>
<tr>
<td>8</td>
<td>Canards</td>
<td>173</td>
</tr>
<tr>
<td>9</td>
<td>Geodesics on flattened surfaces and the billiard ball problem</td>
<td>178</td>
</tr>
<tr>
<td>10</td>
<td>Asymptotic behaviour in boundary value problems with a small parameter</td>
<td>184</td>
</tr>
<tr>
<td>11</td>
<td>A semi-linear problem with boundary layer</td>
<td>192</td>
</tr>
<tr>
<td>12</td>
<td>A semi-linear problem with free and boundary layers</td>
<td>199</td>
</tr>
<tr>
<td>13</td>
<td>A sportsman's story</td>
<td>220</td>
</tr>
<tr>
<td>14</td>
<td>Forced layers in a non autonomous problem</td>
<td>236</td>
</tr>
<tr>
<td>15</td>
<td>Ironing in the problem $\epsilon^2 \Delta \phi = \phi$</td>
<td>247</td>
</tr>
</tbody>
</table>

REFERENCES

253

AUTHOR INDEX

257

GLOSSARY

258