Table of Contents

Introduction ... 1
The Individual .. 1
The Population .. 2
General Bibliography 3

Part 1
Basic Facts and Concepts

Chapter 1. The Foundations of Genetics
1. The Mendelian Theory of Inheritance 6
 1.1. Mendel's First Law. The Law of Segregation 6
 1.2. Mendel's Second Law. Independent Assortment ... 8
 1.3. Restriction of Mendel's Second Law. Linkage ... 9
 1.4. Some Definitions 11
2. The Physical Basis of Mendelian Inheritance. The Chromosomes 13
 2.1. The Behaviour of the Chromosomes. Mitosis and Meiosis 13
 2.2. Consequences of Chromosome Behaviour for Hereditary Transmission of Characters 15
 2.3. Linkage and Crossing Over 16
 2.4. Human Chromosomes 17
 2.5. The Sex Chromosomes 19
 2.6. Chromosome Structure. DNA 20
 2.7. Mutation ... 23
 2.8. Individual Diversity 24

Chapter 2. Basic Concepts and Notation. Genetic Structure of Populations and of Individuals
1. Probability .. 25
 1.1. Definition of Probability 26
 1.2. Principle of Addition of Probabilities 27
 1.3. Principle of Multiplication of Probabilities ... 27
 1.4. Bayes' Theorem 28
 1.5. Random Variables 30
 1.6. The Expectation and Variance of a Random Variable 30
 1.7. Examples of Random Variables 31
2. Genetic Structures 33
 2.1. The Definition of Genic and Genotypic Structures 33
 2.2. The Relation between Genic and Genotypic Structures .. 34
 2.3. The Probability Structures of Populations 35
 2.4. Probability Structures of Individuals 36
Part 2
A Reference Model: Absence of Evolutionary Factors

Chapter 3. The Hardy-Weinberg Equilibrium for one Locus 42
1. Populations .. 42
2. The Hardy-Weinberg Principle 43
 2.1. Stability of the Genic Structure 43
 2.2. Genotypic Structure 44
 2.3. Panmixia and Perfect Panmixia 47
 2.4. The Hardy-Weinberg Principle 48
3. The Classical Treatment of the Hardy-Weinberg Equilibrium 49
 3.1. Establishment of the Equilibrium 50
 3.2. Random Union of Gametes 52
 3.3. Properties of the Hardy-Weinberg Equilibrium 53
4. The Equilibrium for Sex-Linked Genes 55
 4.1. Passage from One Generation to the Next 55
 4.2. The Equilibrium State 56
5. The Hardy-Weinberg Principle in Human Populations 58
 5.1. Autosomal Loci with Two Alleles 58
 5.2. Autosomal Loci with Three Alleles 61
 5.3. Sex-Linked Genes 63
 5.4. Y-Linked Genes 65

Chapter 4. The Equilibrium for Two Loci 66
1. The Role of Individuals 66
2. Genic Structure ... 67
 2.1. The Recurrence Relation for the Transition from One Generation to the Next 68
 2.2. The Constancy of Gene Frequencies 69
 2.3. The Approach to Equilibrium 69
3. Genotypic Structure .. 70
4. Two Loci, Each with Two Alleles 71
 4.1. Gamete Frequencies 71
 4.2. Fusion of Two Populations 73
 4.3. Instantaneous Attainment of Equilibrium 75
5. The Detection and Measurement of Linkage 77
 5.1. Detection of Linkage-Penrose's Method 77
 5.2. Estimation of Recombination Fractions-Morton's Method ... 80
 5.3. Smith's "Bayesian" Method of Estimating Recombination Fractions 82
 5.4. The Linkage Map of Man 85

Chapter 5. The Inheritance of Quantitative Characters 86
1. The Mean ... 87
 1.1. Definition of Additive Effects and Dominance Deviations 87
 1.2. Determination of the Additive Effects and Dominance Deviations 89
Table of Contents

1.3. The Effect of a Small Change in Gene Frequency .. 91
1.4. The Case of a Single Locus with Two Alleles ... 91
1.5. Characters Controlled by Several Loci .. 95
1.6. An Example of a Character Controlled by Several Genes: Skin Colour 96

2. The Variance .. 98
 2.1. Environmental Variance ... 98
 2.2. Genotypic Variance .. 100
 2.3. The Case of a Locus with Two Alleles .. 101

Chapter 6. Genetic Relationships between Relatives ... 102
 1. The Measure of Relatedness ... 103
 1.1. Identity by Descent ... 103
 1.2. The Definition of Coefficients of Identity ... 104
 1.3. The Calculation of Coefficients of Identity 109
 1.4. Sex-Linked Genes ... 114
 2. The Genetic Structures of Related Individuals ... 116
 2.1. The Relation between the Genic Structures of Related Individuals 117
 2.2. The Relation between the Genotypic Structures of Related Individuals 120
 2.3. The Relations between the Genic Structures of Inbred Individuals 128
 2.4. Other Points ... 129
 3. Resemblance between Relatives ... 131
 3.1. The Determination of the Covariance between Relatives 131
 3.2. Some Particular Relationships ... 135
 3.3. The Case of a Locus with Two Alleles ... 136
 3.4. The Interpretation of Observed Correlations between Relatives 138

Chapter 7. Overlapping Generations ... 141
 1. The Demographic Description of a Population ... 141
 1.1. Demographic Parameters .. 142
 1.2. The Future Demographic Structure of a Population 146
 1.3. The Intrinsic Rate of Natural Increase ... 150
 1.4. The Male Population .. 152
 2. The Equilibrium Genetic Structure of a Population with Overlapping Generations .. 153
 2.1. Genic and Genotypic Structures of Populations with Overlapping Generations ... 153
 2.2. The Evolution of the Genetic Structure of a Population 155
 2.3. The Evolution of the Genotypic Structure of a Population 157
 2.4. Conclusions ... 158

Part 3
The Causes of Evolutionary Changes in Populations

Chapter 8. Finite Populations ... 160
 1. Identity by Descent of Genes in Finite Populations 160
 1.1. The Inbreeding Coefficient and Coefficient of Kinship of a Population 160
 1.2. Increase of the Inbreeding Coefficient in a Finite Population 161
 1.3. Constant Effective Population Size .. 163
 1.4. Changing Effective Population Size ... 166
1.5. Relations between Relatives in a Finite Population ... 167
1.6. The Effect of Variance in Number of Offspring on the Effective Population Size ... 171
1.7. The Effect of the Prohibition of Incest on Effective Population Size ... 175
1.8. Effective Population Size in Populations with Overlapping Generations ... 178

2. Changes in the Genotypic Probability Structure ... 178
 2.1. The Difference Equation for Genotypic Probability Structure ... 179
 2.2. The Genotypic Probability Structure at Intermediate Stages ... 182
 2.3. The Stages of Change in Genotypic Structure ... 183
 2.4. Genetic Drift ... 184
 2.5. The Disappearance of Heterozygotes ... 186
 2.6. Sib-Mating ... 188
 2.7. Summary ... 190

3. The Transmission of Genes from One Generation to the Next ... 191
 3.1. The Probability Distribution of the Number of Genes Transmitted ... 191
 3.2. Changes in Gene Frequencies ... 192
 3.3. Genetic Drift ... 193
 3.4. The Rate of Attainment of Homozygosity ... 195

4. Matings between Relatives in a Finite Population ... 197
 4.1. Matings between Sibs ... 197
 4.2. Matings between First Cousins ... 198
 4.3. The Role of the Variance in Number of Offspring ... 200

5. Observations on Human Populations ... 202
 5.1. The Frequency of Consanguineous Marriages ... 202
 5.2. Consanguineous Marriages in France ... 204
 5.3. Consanguineous Marriages in Several Catholic Countries ... 208
 5.4. Consanguineous Marriages in some Non-Catholic Countries ... 210
 5.5. Mating between Relatives in Populations with Overlapping Generations ... 211

6. Subdivision of a Population ... 212
 6.1. Changes in Gene Frequencies and Coefficients of Kinship ... 212
 6.2. Effect of Limited Sample Sizes ... 215
 6.3. Sampling Variance of \(a \) ... 216
 6.4. The Effect of Relationship between Groups ... 218

Chapter 9. Deviations from Random Mating ... 220
1. Genotype Frequencies Among the Offspring of Consanguineous and Assortative Matings ... 221
 1.1. An Example of Non-Independence between Mates ... 221
 1.2. The Offspring of a Consanguineous Mating ... 223
 1.3. The Biological Consequences of Consanguineous Mating ... 225
 1.4. The Frequency of Consanguineous Marriages among the Parents of Children Affected with Genetic Disorders ... 227

2. Choice of Mates Based on Relatedness ... 228
 2.1. Sib-Mating ... 229
 2.2. Parent-Offspring Mating ... 231
 2.3. Half-Sib Mating ... 232
 2.4. Double First-Cousin Mating ... 234
 2.5. First-Cousin Mating ... 236
 2.6. Second-Cousin Mating ... 240
 2.7. Number of Ancestors and the Approach Towards Homozygosity ... 242
 2.8. Avoidance of or Preference for Certain Types of Marriage ... 243
<table>
<thead>
<tr>
<th>Chapter 10. Selection</th>
<th>269</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Some Simple Models of Selection</td>
<td></td>
</tr>
<tr>
<td>1.1. Definition of Selective Values</td>
<td>270</td>
</tr>
<tr>
<td>1.2. Change in Gene Frequencies</td>
<td>272</td>
</tr>
<tr>
<td>1.3. Loci with Two Alleles</td>
<td>273</td>
</tr>
<tr>
<td>1.4. Constant Selective Values</td>
<td>277</td>
</tr>
<tr>
<td>1.5. Some Particular Cases</td>
<td>278</td>
</tr>
<tr>
<td>1.6. Variable Selective Values</td>
<td>291</td>
</tr>
<tr>
<td>1.7. Constant Selection for a Sex-Linked Gene</td>
<td>297</td>
</tr>
<tr>
<td>1.8. Selection in the Multi-Locus Case</td>
<td>301</td>
</tr>
<tr>
<td>2. The Consequences of Selection for the Mean Fitness of Populations</td>
<td>301</td>
</tr>
<tr>
<td>2.1. Constant Selective Values</td>
<td>302</td>
</tr>
<tr>
<td>2.2. Variable Selective Values</td>
<td>306</td>
</tr>
<tr>
<td>3. Selection in Populations with Overlapping Generations</td>
<td>307</td>
</tr>
<tr>
<td>3.1. Demographic Parameters and Selective Differences</td>
<td>308</td>
</tr>
<tr>
<td>3.2. Some Examples of Selection in Human Populations</td>
<td>311</td>
</tr>
<tr>
<td>4. The Study of Selection in Human Populations</td>
<td>316</td>
</tr>
<tr>
<td>4.1. Difficulties in Detecting Selective Effects</td>
<td>316</td>
</tr>
<tr>
<td>4.2. Direct Evidence for Selective Differences Associated with Human Polymorphisms</td>
<td>318</td>
</tr>
<tr>
<td>4.3. Indirect Evidence for Selection</td>
<td>319</td>
</tr>
<tr>
<td>4.4. The Index of the Opportunity for Selection</td>
<td>321</td>
</tr>
<tr>
<td>Further Reading</td>
<td>330</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 11. Mutation</th>
<th>331</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The Probability of Survival of a Mutant Gene</td>
<td>331</td>
</tr>
<tr>
<td>1.1. Elimination of a Neutral Allele</td>
<td>332</td>
</tr>
<tr>
<td>1.2. Survival of a Neutral Mutant Gene in a Finite Population</td>
<td>334</td>
</tr>
<tr>
<td>1.3. The Probability that an Advantageous New Mutant Gene will be Maintained in the Population</td>
<td>334</td>
</tr>
</tbody>
</table>
Table of Contents

2. Recurrent Mutations .. 335
 2.1. Change in Genic Structure due to Recurrent Mutation 336
 2.2. The Case of a Locus with two Alleles 337
3. The Resultant Effect of Selection and Mutation at a Locus with Two Alleles 339
 3.1. The Equilibrium between Mutation and Selection 339
 3.2. Constant Selective Values ... 340
4. The Human Mutation Rate .. 343
5. The Spread of a Mutation: Congenital Dislocation of the Hip 349

Further Reading ... 350

Chapter 12. Migration .. 351
1. Deterministic Models with Migration 351
 1.1. Changes in Genic Structure .. 352
 1.2. Changes in Genotypic Structure 355
 1.3. Applications to Actual Populations 357
 1.4. Deterministic Models of Migration when Other Forces for Change are Acting .. 358
2. Stochastic Models with Migration ... 362
 2.1. Migration ... 363
 2.2. Stochastic Models of Migration with Other Evolutionary Forces also Acting .. 371
 2.3. Migration and Mutation in a Spatially Continuous Population 376
3. Data on Migration in Human Populations 381
 3.1. Models of the Migration Process 381
 3.2. Comparison of the Genetic Models with the Models of Migration 384
4. Conclusions .. 385

Further Reading ... 386

Chapter 13. The Combined Effects of Different Evolutionary Forces 388
1. Wright’s Model ... 389
 1.1. Change in Gene Frequency from One Generation to the Next 389
 1.2. The Fundamental Equation .. 391
 1.3. The Asymptotic Probability Distribution 393
 1.4. Some Further Results on Selection and Mutation in Finite Populations .. 398
2. Simulation ... 400
 2.1. The Principles of Monte Carlo Methods 401
 2.2. The Use of Monte Carlo Methods 403
 2.3. Simulation of the Genetic Structure of a Population 405
3. Maintenance of Polymorphisms, Genetic Load 406
 3.1. The Equilibrium under Mutation and Selection 406
 3.2. Maintenance of Variability by Neutral Mutation 408
 3.3. Heterotic Equilibrium .. 409
 3.4. The Genetic Load of a Locus .. 410
 3.5. The Total Genetic Load .. 412
 3.6. The Effect of Inbreeding on Selective Value 415
 3.7. Conclusion: “Neo-Darwinian” Versus “Non-Darwinian” Evolution 417

Further Reading ... 418
Table of Contents

Part 4
The Study of Human Population Structure

Chapter 14. Genetic Distance. I. Basic Concepts and Methods . 420
1. The Idea of Distance 420
 1.1. The Definition of Distance 422
 1.2. Distance between Objects Characterised by Measurements 422
 1.3. Distance between Objects Characterised by Qualitative Attributes 428
2. Distance between Individuals of Known Ancestry 433
 2.1. Inadequacy of the Coefficient of Kinship 433
 2.2. Genotypic Distance between Relatives 434
 2.3. Other Measures of Distance between Relatives 444
3. Distances between Populations 449
 3.1. Distance between the Genetic Structures of Populations 449
 3.2. Distance between Populations of Known Ancestry 453
 3.3. Biometrical Estimation of the Relatedness of Two Populations 456
 3.4. Conclusion 461

Further Reading 462

Chapter 15. Genetic Distance. II. The Representation of Sets of Objects 463
1. Principal Components Analysis 465
 1.1. The First Principal Axis 465
 1.2. The First Principal Surface 470
 1.3. Generalisation 473
 1.4. Normalisation of Measures 475
 1.5. Interpretation of the Projections Obtained. Representation of Characters 476
2. Principal Components Analysis of Contingency Tables 479
 2.1. The χ^2 Metric 480
 2.2. The Projection of the Object-Points Onto the Principal Plane 482
 2.3. The Principal Plane of the Character-Points 484
 2.4. Interpretation of the Simultaneous Representation of Objects and Characters 485
3. Cluster Analysis 487
 3.1. Information and Variance 488
 3.2. Aggregation of Two Objects 489
 3.3. Interpretation of the Decrease in Variance: The Diameter of a Class 491
 3.4. Phylogenetic Trees 492

Chapter 16. Some Studies of Human Populations 494
1. The Jicaque Indians of the Montaña de la Flor, Honduras 495
 1.1. History of the Group 495
 1.2. Inbreeding among the Jicaque Indians 496
 1.3. Changes in the Genetic Composition of the Group 499
2. The Bedik of Eastern Senegal 501
 2.1. History and Ecology 501
 2.2. Marriages among the Bedik 502
 2.3. Haematological Characters—Distances between Villages 504
 2.4. Representation of the Structure of the Population 506
3. The Kel Kummer Tuareg of Mali ... 509
 3.1. History, Ecology and Social Organisation 509
 3.2. The Genealogy of the Kel Kummer People 511
 3.3. Changes in the Genetic Make-up of the Population 513
 3.4. Haematological Studies of the Kel Kummer Population ... 518

4. Classification of Populations Using the HL-A Systems 524
 4.1. Data and Methods of Calculation 524
 4.2. Results .. 525

Conclusion ... 530

Appendix A. Linear Difference Equations 533
 1. Definitions .. 533
 2. The Solution of Linear Difference Equations 534
 2.1. The General Solution of a Homogeneous Equation of Order m 534
 2.2. The General Solution of an Inhomogeneous Equation of Order m 535
 2.3. The Solution of the Homogeneous Equation of Order m, with Constant Coefficients 535
 2.4. The Renewal Equation of Order m 536

Appendix B. Some Definitions and Results in Matrix Algebra 538
 1. Definitions .. 538
 1.1. Types of Matrix .. 538
 1.2. The Determinant of a Matrix 539
 1.3. Matrix Addition and Multiplication 540
 2. Diagonalisation of a Square Matrix 542
 2.1. The Powers of a Matrix 542
 2.2. The Eigenvalues of a Matrix 543
 3. The Spectral Analysis of a Matrix 546
 4. Real Symmetric Matrices ... 547
 4.1. The Eigenvalues of a Real Symmetric Matrix are all Real 547
 4.2. The Eigenvectors of a Real Symmetric Matrix Corresponding to Distinct Eigenvalues are Orthogonal 548
 5. Stochastic Matrices ... 549
 5.1. The Eigenvalues of Stochastic Matrices 549
 5.2. The Spectral Analysis of a Stochastic Matrix 551

References .. 553

Subject Index .. 561