CONTENTS

Chapter 1. INTRODUCTION

1. Stability as a property of a family of systems .. 13
2. The families of systems considered in the problem of absolute stability 14
3. Selecting the most natural families of systems ... 16
4. Introducing new families of systems .. 17
5. The concept of hyperstability ... 18
6. Indications on the use of the monograph .. 19

Chapter 2. CLASSES OF EQUIVALENT SYSTEMS

§ 1. Equivalence classes for quadratic forms with relations between the variables

1. Transformations of quadratic forms with relations between the variables 24
2. Successive transformations ... 26
3. More about the group \mathcal{G} .. 27
4. Partitioning of the set \mathcal{E} into classes .. 28
5. Other equivalence classes .. 29

§ 2. Classes of single-input systems

1. The system ... 30
2. Transformations .. 32
3. Some particular transformations .. 36
4. The polarized system and its properties ... 37

§ 3. The characteristic polynomial of single-input systems

1. The characteristic function of single-input systems .. 39
2. The characteristic polynomial and its properties ... 41
3. Relations between the characteristic functions of systems belonging to the same class .. 42
4. Invariance of the characteristic polynomial under the transformations introduced in § 2 .. 43
§ 4. Conditions under which all systems with the same characteristic polynomial belong to the same class

1. Some supplementary assumptions 45
2. A one-to-one correspondence between the characteristic polynomials and certain particular systems 46
3. A property of "completely controllable systems" 48
4. Methods for bringing completely controllable systems to special forms 49
5. Properties of systems with the same $\pi (-\sigma, \sigma)$.. 50

§ 5. Equivalence classes for multi-input systems

1. Definition and properties of the classes of multi-input systems 54
2. The characteristic function 58
3. Properties of the determinants of $H(\lambda, \sigma)$ and $C(\sigma)$.. 61
4. The characteristic polynomial and its invariance 63
5. Systems with a fixed differential equation 64

§ 6. Equivalence classes for discrete systems

1. Definition of the classes of discrete systems 69
2. The characteristic function and the characteristic polynomial 72
3. Relations between discrete systems with the same characteristic function ... 74

§ 7. Equivalence classes for systems with time dependent coefficients 75

Chapter 3. POSITIVE SYSTEMS

§ 8. Single-input positive systems

1. Definition of single-input positive systems 79
2. Theorem of positiveness for single-input systems 80
3. Remarks on the theorem of positiveness 82
4. Proof of the theorem of positiveness 83
5. The Yakubovich-Kalman lemma 89
6. Special forms for completely controllable single-input positive systems .. 90

§ 9. Multi-input positive systems

1. The theorem of positiveness for multi-input systems 97
2. Proof of the theorem ... 99
3. Generalization of the Yakubovich-Kalman lemma 106
4. Special forms for multi-input positive systems 106

§ 10. Discrete positive systems

1. The theorem of positiveness for discrete systems 109
2. Proof of the theorem 110
3. Generalization of the Kalman-Szego lemma 112
Chapter 4. HYPERSTABLE SYSTEMS AND BLOCKS

§ 13. General properties of the hyperstable systems
1. Linear systems of class \mathcal{H} .. 118
2. Hypotheses concerning the systems of class \mathcal{H} 119
3. Other properties of the systems belonging to class \mathcal{H} 121
4. Definition of the property of hyperstability 122
5. A consequence of property H_4 124
6. A sufficient condition of hyperstability 126
7. Hyperstability of systems which contain "memoryless elements" 128
8. The "sum" of two hyperstable systems 128
9. Hyperstable blocks and their principal properties 131

§ 14. Single-input hyperstable systems 138

§ 15. Simple hyperstable blocks 157

§ 16. Multi-input hyperstable systems 165

§ 17. Multi-input hyperstable blocks 186

§ 18. Discrete hyperstable systems and blocks 189

§ 19. Hyperstability of more general systems 196

§ 20. Integral hyperstable blocks
1. Description of completely controllable integral blocks 199
2. Definition of the hyperstable integral blocks 201
3. A method of obtaining the desired inequalities 202
4. Hyperstability theorem for integral blocks 203
5. Multi-input integral blocks 208

§ 21. Lemma of I. Barbařat and its use in the study of asymptotic stability 210

§ 22. Other methods for studying asymptotic stability 213

§ 23. Conditions of asymptotic stability of single-input and multi-input systems with constant coefficients 227

§ 24. Characterization of the hyperstability property by the stability of systems with negative feedback 235
Chapter 5. Applications

§ 25. Inclusion of the problem of absolute stability in a problem of hyper-stability

1. The absolute stability problem for systems with one nonlinearity 240
2. Definition of an auxiliary problem of hyperstability 242
3. A frequency criterion 245
4. Discussion of the condition of minimal stability 247
5. Sufficient conditions for absolute stability 250
6. Sufficient conditions for asymptotic stability 251
7. Simplifying the frequency criterion 255
8. Using hyperstable blocks to treat the problem of absolute stability 257
9. Determining the largest sector of absolute stability 261
10. Other generalizations of the problem of absolute stability 263

§ 26. Determination of some Liapunov functions

1. Necessary conditions for the existence of Liapunov functions of the Lur'e-Postnikov type 264
2. Functions of the Liapunov type for systems with a single non-linearity 270

§ 27. Stability in finite domains of the state space

1. An auxiliary lemma 272
2. Stability in the first approximation 273

§ 28. Stability of systems containing nuclear reactors 275

§ 29. Stability of some systems with non-linearities of a particular form

1. Systems with monotone non-linear characteristics 279
2. Stability of a system with a non-linearity depending on two variables 283

§ 30. Optimization of control systems for integral performance indices 286

Appendix A. Controllability; Observability; Nondegeneration

§ 31. Controllability of single-input systems

1. Definition of the complete controllability of single-input systems 291
2. Theorem of complete controllability of single-input systems 293
3. Discussion .. 297
4. Proof of the theorem ... 300
5. Relations between single-input completely controllable systems . 310

§ 32. Single-output completely observable systems 312

§ 33. Nondegenerate systems

1. Definition of the property of nondegeneration and statement of the theorem of nondegeneration 314
2. Remarks on the theorem of nondegeneration 315
3. Proof of the theorem of nondegeneration 315
4. Bringing nondegenerate systems into the Jordan-Lur'e-Lefschetz form ... 318

§ 34. Controllability of multi-input systems

1. Definition and theorem of the complete controllability of multi-input systems .. 319
2. Proof of Theorem 1 ... 322
3. Other properties of completely controllable multi-input systems .. 328

§ 35. Completely observable multi-output systems 330

§ 36. Special forms for multi-input blocks 332

Appendix B. FACTORIZATION OF POLYNOMIAL MATRICES

§ 37. Auxiliary propositions ... 350

§ 38. Theorem of factorization on the unit circle

1. Statement of the theorem ... 356
2. Preliminary remarks ... 357
3. Some additional assumptions 359
4. An asymmetrical factorization of the matrix $\lambda^n X(\lambda)$... 360
5. A family of factorization relations 361
6. A special way of writing polynomial matrices 362
7. A nonsingular factorization 363
8. Properties of the nonsingular factorizations 365
9. Bringing the nonsingular factorization to the form required in Theorem 1 ... 367
10. More about Assumption (e) .. 369
11. Eliminating restrictions (C) and (e) 370
§ 39. The theorem of factorization on the imaginary axis

1. Statement of the theorem ... 376
2. Definition of a matrix factorizable on the unit circle 377
3. Relations between \(\psi(\sigma) \) and \(\varphi(\lambda) \) 378
4. Factorization of the imaginary axis 379

Appendix C. POSITIVE REAL FUNCTIONS 381
Appendix D. THE PRINCIPAL HYPERSTABLE BLOCKS 391
Appendix E. NOTATIONS .. 393
Appendix F. BIBLIOGRAPHY ... 395