CONTENTS

1 INTEGRAL-TRANSFORM PAIRS

1.1 Introduction 1
1.2 Fourier's integral formulas 6
1.3 Fourier-transform pairs 7
1.4 Laplace-transform pairs 10
Exercises 12

2 THE LAPLACE TRANSFORM

2.1 Introduction 13
2.2 Transforms of derivatives 14
2.3 Simple oscillator 15
2.4 Convolution theorem 17
2.5 Heaviside's shifting theorem 18
2.6 Periodic functions 20
2.7 The inversion integral 24
2.8 Wave propagation in a bar 30
2.9 Heat conduction in a semi-infinite solid 34
2.10 Oscillating airfoil in supersonic flow 36
Exercises 38
3 FOURIER TRANSFORMS

3.1 Introduction 43
3.2 Transforms of derivatives 43
3.3 Operational theorems 45
3.4 Initial-value problem for one-dimensional wave equation 46
3.5 Heat conduction in a semi-infinite solid 47
3.6 Two-dimensional surface-wave generation 48
3.7 The method of stationary phase 50
3.8 Fourier transforms in two or more dimensions 53

Exercises 54

4 HANKEL TRANSFORMS

4.1 Introduction 57
4.2 Oscillating piston 59
4.3 Axisymmetric surface-wave generation 61

Exercises 65

5 FINITE FOURIER TRANSFORMS

5.1 Introduction 67
5.2 Finite cosine and sine transforms 68
5.3 Wave propagation in a bar 70
5.4 Heat conduction in a slab 71
5.5 Finite Hankel transforms 72
5.6 Cooling of a circular bar 73
5.7 Viscous diffusion in a rotating cylinder 74
5.8 Conclusion 75

Exercises 76