CONTENTS

1 INTRODUCTION
L. FOX, FIMA, University of Oxford

2 GENERAL CONSIDERATIONS
C. W. CLENSHAW, FIMA, National Physical Laboratory, Teddington
1. Introduction, 4; 2. Choice of norm, 6; 3. Choice of approximating function, 10; 4. Polynomials and splines, 12

3 THE POLYNOMIAL AND RATIONAL APPROXIMATION OF A FUNCTION OF ONE VARIABLE
C. W. CLENSHAW, FIMA, National Physical Laboratory, Teddington

4 THE APPROXIMATION OF A FUNCTION OF ONE VARIABLE BY CUBIC SPLINES
A. R. CURTIS, FIMA, Atomic Energy Research Establishment, Harwell
1. Introduction, 28; 2. Description of the algorithm, 32; 3. Useful results for constant knot spacing, 35; 4. Effect of change of interval, 36; 5. End-of-range conditions, 38; 6. Discussion, 40

5 CURVE FITTING BY POLYNOMIALS IN ONE VARIABLE
J. G. HAYES, FIMA, National Physical Laboratory, Teddington

6 CURVE FITTING BY SPLINES IN ONE VARIABLE
M. J. D. POWELL, FIMA, Atomic Energy Research Establishment, Harwell
1. Introduction, 65; 2. An outline of the algorithm, 67; 3. The need for smoothing, 68; 4. The linear parameters of $s(x)$, 70; 5. The test for trends, 72; 6. The magnitude of the smoothing term, 74; 7. Numerical examples, 79

7 FITTING DATA IN MORE THAN ONE VARIABLE
J. G. HAYES, FIMA, National Physical Laboratory, Teddington
8 AN AUTOMATIC CURVE-FITTING PACKAGE
J. A. PAYNE, Imperial Chemical Industries Ltd., Wilmslow

9 EXPERIENCE WITH CUBIC SPLINES IN THE GRADUATION OF NEUTRON CROSS-SECTION DATA
K. PARKER, Atomic Weapons Research Establishment, Aldermaston

10 METHODS OF GRADUATING HETEROGENEOUS DATA
J. B. PARKER, FIMA, Atomic Weapons Research Establishment, Aldermaston
1. Introduction, 111; 2. Development of method, 112; 3. Examples, 114

11 COMPUTATIONAL EXPERIENCE IN SOLVING LINEAR OPERATOR EQUATIONS USING THE CHEBYSHEV NORM
I. BARRODALE and A. YOUNG, FIMA, University of Liverpool

12 OPTIMAL APPROXIMATION AND INTERPOLATION IN NORMED SPACES
J. MEINGUET, Catholic University of Louvain, Belgium

13 APPROXIMATION THEORY—YESTERDAY, TODAY AND TOMORROW
P. J. DAVIS, Brown University, Rhode Island, USA
1. Introduction, 158; 2. Approximation theory a generation ago, 158; 3. Approximation theory today, 158; 4. What should approximators be doing in the future?, 162; 5. The present position of numerical analysis, 164

REFERENCES

INDEX

1 Now at the University of Victoria, B.C., Canada.
2 Now at the New University of Ulster, Northern Ireland.