Contents

1

FIRST-ORDER DIFFERENTIAL EQUATIONS

1 Introduction 1
2 Fundamental theorem of the calculus 3
3 Solutions and integrals 4
4 Regular and normal curve families 6
5 Exact differentials; integrating factors 9
6 First-order linear equations 11
7 The linear fractional equation 13
8 Graphical integration 15
*9 Equations of higher degree 17
10 Initial value problems 20
11 Uniqueness and continuity 21
12 The comparison theorem 24

2

SECOND-ORDER LINEAR EQUATIONS

1 Basic definitions 28
2 Initial value problems 31
3 The Wronskian 33
4 Separation and comparison theorems 37
*5 Poincaré phase plane 39
6 Adjoint operators 41
7 Lagrange identity 42
8 Green's functions 44
9 Variation of parameters 47
*10 Two-endpoint problems 49
*11 Green's functions 51
3

POWER SERIES SOLUTIONS

1 Introduction 56
2 Method of undetermined coefficients 58
*3 Sine and cosine functions 61
*4 Bessel functions 63
5 Analytic functions 67
6 Method of majorants 69
7 First-order nonlinear differential equations 72
8 Undetermined coefficients 73
*9 Radius of convergence 76
*10 Method of majorants, II 77
*11 Complex solutions 80

4

LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

1 The characteristic polynomial 83
2 Real and complex solutions 85
3 Linearly independent solutions 87
4 Solution bases 89
5 Stability 92
6 Inhomogeneous equations 94
7 The transfer function 96
*8 The Nyquist diagram 98
9 The Green’s function 101
*10 Laplace transforms 105
*11 Convolution 109

5

PLANE AUTONOMOUS SYSTEMS

1 Autonomous systems 112
2 Plane autonomous systems 115
3 Poincaré phase plane 117
4 Linear autonomous systems 120
6

EXISTENCE AND UNIQUENESS THEOREMS

1 Introduction 148
2 Lipschitz condition 149
3 Well-set problems 152
4 Continuity 154
*5 Normal systems 157
6 Equivalent integral equation 161
7 Successive approximation 162
8 Linear systems 165
9 Local existence theorem 167
*10 Analytic equations 169
11 Continuation of solutions 172
*12 The perturbation equation 174
13 Plane autonomous systems 176
*14 The Peano existence theorem 177

7

APPROXIMATE SOLUTIONS

1 Introduction 182
2 Cauchy polygons 183
3 Error bounds 187
4 Order of accuracy 188
5 Midpoint quadrature 189
6 Trapezoidal quadrature 193
*7 Accurate error estimates 194
8 Trapezoidal integration 197
8 EFFICIENT NUMERICAL INTEGRATION

1 Introduction 208
2 Difference operators 209
3 Characteristic equation; stability 210
4 Polynomial interpolation 213
5 The interpolation error 215
6 Roundoff errors 217
7 Numerical differentiation 218
8 Difference approximations 221
9 Simpson’s rule 223
*10 Gaussian quadrature 226
11 Milne’s method 228
12 Stability; error analysis 231
13 Local power series 234
14 The Runge-Kutta method 235

9 REGULAR SINGULAR POINTS

1 Continuation principle 240
*2 Movable singular points 243
3 First-order equations 244
4 Circuit matrix 247
5 Canonical bases 249
6 Regular singular points 252
7 Bessel equation 254
8 The fundamental theorem 259
*9 Alternative proof of the fundamental theorem 262
*10 Hypergeometric functions 265
*11 Jacobi polynomials 266
*12 Singular points at infinity 269
*13 Fuchsian equations 271
10

STURM-LIOUVILLE SYSTEMS

1 Sturm-Liouville systems 277
2 Sturm-Liouville series 279
*3 Physical interpretations 283
4 Singular systems 284
5 Prüfer substitution 288
6 The Sturm comparison theorem 289
7 The oscillation theorem 290
8 The sequence of eigenfunctions 294
9 The Liouville normal form 296
10 Modified Prüfer substitution 299
*11 The asymptotic behavior of Bessel functions 302
12 Distribution of eigenvalues 303
13 Normalized eigenfunctions 305
14 Inhomogeneous equations 308
15 Green’s functions 309
*16 The Schrödinger equation 311
*17 The square-well potential 313
*18 Mixed spectrum 314

II

EXPANSIONS IN EIGENFUNCTIONS

1 Fourier series 318
2 Orthogonal expansions 320
3 Mean-square approximation 321
4 Completeness 323
5 Orthogonal polynomials 326
*6 Properties of orthogonal polynomials 328
*7 Chebyshev polynomials 332
8 Euclidean vector spaces 334
9 Completeness of eigenfunctions 336
*10 Hilbert space 338
*11 Proof of completeness 341
APPENDIX: LINEAR SYSTEMS

1 Matrix norm 347
2 Constant-coefficient systems 348
3 The matrizant 349
4 Floquet theorem; canonical bases 351

BIBLIOGRAPHY 355

INDEX 361