Contents

Chapter 1 Complete Sets of Mutually Orthogonal Latin Squares 1

1.1. Latin squares and orthogonal Latin squares, 1—1.2. Upper bound for
the number of orthogonal Latin squares, 2—1.3. Construction of complete
sets of mols, 3—1.4. Connection between complete sets of mols and $PG(2, s)$,
5—1.5. Nonexistence of complete sets of mols, 6—1.6. Embedding to a
complete set of mols, 7—References, 8—Bibliography, 8.

Chapter 2 Orthogonal Arrays 9

2.1. Introduction and definition, 9—2.2. Maximum number of constraints,
11—2.3. Use of projective geometry in the construction of orthogonal arrays,
19—2.4. Construction of orthogonal arrays of index unity, 21—2.5. Method
of differences in the construction of orthogonal arrays, 22—2.6. Orthogonal
arrays $(2s^n, 2(s^n - 1)/(s - 1) - 1, s, 2)$, 26—2.7. Product of orthogonal
arrays, 28—2.8. Embedding of orthogonal arrays, 28—2.9. Partially balanced
arrays, 29—References, 30—Bibliography, 31.

Chapter 3 Pairwise Balanced Designs and Mutually Orthogonal Latin
Squares 32

3.1. Introduction, 32—3.2. MacNeish–Mann theorem, 34—3.3. Pairwise
balanced designs, 36—3.4. Application of pairwise balanced designs in the
construction of mols, 37—3.5. Use of the method of differences in the
construction of mols, 41—3.6. Falsity of Euler's conjecture, 43—3.7.
Greatest lower bound on the number of mols of order $s \leq 100$, 43—Ref-
ences, 45—Bibliography, 46.

Chapter 4 General Properties of Incomplete Block Designs 48

4.1. Introduction, 48—4.2. Connectedness, 49—4.3. Balancing in connected
Efficiency factor, 58–4.6. \(\alpha \)-resolvability and affine \(\alpha \)-resolvability, 59–4.7. An inequality for balanced designs, 60—References, 61.

Chapter 5 Balanced Incomplete Block Designs 63

5.1. Introduction, 63—5.2. BIB designs related to a given BIB design, 64—5.3. Family (A) BIB designs, 69—5.4. Affine resolvable BIB designs, 71—5.5. Set structure of BIB designs, 72—5.6. Construction of BIB designs through finite geometries, 77—5.7. Construction of BIB designs through the method of symmetrically repeated differences, 79—5.8. Steiner’s triple systems, 86—5.9. Miscellaneous methods of constructing BIB designs, 87—5.10. Concluding remarks, 90—References, 95—Bibliography, 98.

Chapter 6 Systems of Distinct Representatives and Youden Squares 101

Chapter 7 Tactical Configurations and Doubly Balanced Designs 112

7.1. Introduction, 112—7.2. Tactical configurations \(C[4, 3, \delta, v] \), 114—7.3. An inequality for \(C[k, l, \delta, v] \) configurations, 115—7.4. Construction of a series of doubly balanced designs, 117—7.5. \(C[k, l, \delta, v] \) configurations as partially balanced arrays, 118—References, 120—Bibliography, 120.

Chapter 8 Partially Balanced Incomplete Block Designs 121

Chapter 9 Graph Theory and Partial Geometries 183

Chapter 10 Duals of Incomplete Block Designs 199

10.1. Introduction, 199—10.2. Dual of an incomplete block design to be a specified design, 199—10.3 Duals of asymmetrical BIB designs with $\lambda = 1$ or $\lambda = 2$, 204—10.4. Duals of some PBIB designs, 206—10.5. Linked block designs, 209—References, 211—Bibliography, 211.

Chapter 11 Symmetrical Unequal-Block Arrangements with Two Unequal Block Sizes 212

Chapter 12 Nonexistence of Incomplete Block Designs 222

Chapter 13 Confounding in Symmetrical Factorial Experiments 243

Chapter 14 Confounding in Asymmetrical Factorial Experiments 260

14.1. Introduction, 260—14.2. Total relative loss of information in confounded experiments, 261—14.3. Confounded asymmetrical factorial experiments as PBIB designs, 262—14.4. Confounding in asymmetrical factorials where the levels of factors are different powers of the same prime, 264—14.5. Confounding in $3^m \times 2^n$ experiments, 265—14.6. Confounding in $v \times s^m$ experiments in blocks of vs^{m-1} plots, 266—14.7. Use of finite geometries in the construction of confounded asymmetrical designs, 268—14.8. Confounded asymmetrical $3^m \times 2^n$ experiments in blocks of 2^k plots, 270—
References, 270—Bibliography, 271.

Chapter 15 Fractional Replication 272

15.1. Introduction, 272—15.2. $1/2^k$ replicate of 2^n factorial experiments, 273—15.3. $1/s^k$ replicate of s^n factorial experiments, 274—15.4. Fractional replicate plans with the help of mols, 276—15.5. Use of Hadamard matrices in the construction of fractional replicate plans, 277—15.6. Use of orthogonal arrays in the construction of fractional replicate plans, 277—15.7. Special types of 2^n fractional replicate plans, 277—15.8. Irregular fractions of 2^n designs, 280—15.9. Fractional plans for asymmetrical factorial experiments, 281—15.10. Nonorthogonal fractional plans, 286—
References, 287—Bibliography, 289.

Chapter 16 Rotatable Designs 291

Chapter 17 Weighing Designs 305

17.1. Introduction, 305.
A. Chemical-Balance Weighing Designs 307

17.2. The model, 307—17.3 Variance limit of estimated weights, 308—17.4. Hadamard matrices and optimum designs, 309—17.5. Efficiency criteria, 315—17.6. Best weighing designs when \(n \) is odd or \(n \equiv 2 \pmod{4} \), 316.

B. Spring-Balance Weighing Designs 319

17.7. Variance limits of estimated weights and optimum weighing designs, 319.

C. Singular Weighing Designs 321

17.8. Need for considering singular weighing designs, 321—17.9. Estimable parametric functions of the weights for singular weighing designs, 322—17.10 A simple way of taking \(p - r \) additional weighings for a singular weighing design, 324—17.11. Best way of taking the additional weighing when \(r = p - 1 \), 327—17.12. Some results in the general case, 330—References, 334—Bibliography, 336.

Appendix A Mathematics for Statisticians 337

Appendix B Statistics for Mathematicians 361

Miscellaneous Exercises 371

Index 379