Teaching Mathematics with Classroom Voting

With and Without Clickers

Edited by
Kelly Cline
Carroll College

and

Holly Zullo
Carroll College

Published and Distributed by
The Mathematical Association of America
Contents

I An Introduction to Teaching Mathematics with Classroom Voting

Introduction

1. **Teaching Mathematics with Classroom Voting, Kelly Cline and Holly Zullo**
 1.1 What is classroom voting?
 1.2 History and Evidence of Effectiveness
 1.3 Our Experience
 1.4 Our Advice
 1.5 Resources and Conclusions

2. **Key Issues in Classroom Voting, Holly Zullo, Kathy Gniadek, Derek Bruff, and Kelly Cline**
 2.1 To Use Clickers or Not to Use Clickers
 2.2 Two-Cycle or One-Cycle Voting
 2.3 To Grade or Not to Grade

II Studies of Classroom Voting in Mathematics

3. **Can Good Questions and Peer Discussion Improve Calculus Instruction?, Robyn L. Miller, Everilis Santana-Vega, and Maria S. Terrell**
 3.1 Introduction
 3.2 Some Characteristics of a Good Question
 3.3 Summary of Preliminary Findings
 3.4 Concluding Remarks

4. **Using Peer Instruction and i-clickers to Enhance Student Participation, Adam Lucas**
 4.1 Purpose
 4.2 Introduction
 4.3 Methods
 4.4 Results
 4.5 Discussion
 4.6 Conclusions

5. **Student Surveys: What Do They Think?, Holly Zullo, Kathy Gniadek, Derek Bruff, and Kelly Cline**
 5.1 Introduction
 5.2 Aggregate Results
 5.3 Course-by-Course Results
 5.4 Student Focus Groups
 5.5 Conclusion

Appendixes

- **Appendix A: Student Survey**
- **Appendix B: Class-by-Class Survey Results**
III Classroom Voting in Specific Mathematics Classes 35

6 Questions to Engage Students in Discussion (Q.E.D): Using Clickers in a Mathematics for Liberal Arts Course, Kelly Cline and Holly Zullo 37
 6.1 The Audience ... 37
 6.2 The Course ... 37
 6.3 A Problem ... 38
 6.4 First Day with Clickers .. 38
 6.5 Typical Class .. 38
 6.6 A First Try: “Vertical” Questions .. 39
 6.7 Questions to Engage students in Discussion (Q.E.D) .. 39
 6.8 What Students Say ... 41
 6.9 What Faculty Say .. 41
 6.10 Pros and Cons ... 42
 6.11 The Future ... 42

7 Clickers in Introductory Statistics Courses, Holly Zullo, Kathy Gniadek, Derek Bruff, and Kelly Cline 43
 7.1 Introduction ... 43
 7.2 Box-and-Whiskers Plots Lesson Plan — McKnight ... 45
 7.3 Expected Value Lesson Plan — Richman ... 46
 7.4 Hypothesis Testing Lesson Plan — Murphy .. 49
 7.5 Methods for Reporting Statistical Results Lesson Plan — Terry .. 50
 7.6 Concluding Remarks .. 51

8 Using Clickers in a Statistics Classroom, Brenda K. Gunderson and Herle M. McGowan 53
 8.1 Background about the Course ... 53
 8.2 Clickers in our Course: Historical to Current Use .. 53
 8.3 Lesson Plan I: Using Confidence Intervals to Test Hypotheses ... 54
 8.4 Lesson Plan II: How to Look at your Data ... 56
 8.5 Lesson Plan III: Testing about a Population Proportion .. 57
 8.6 Final Thoughts .. 58
 8.7 Appendix: In-Lab Project Handout — Testing for a Population Proportion 58

9 Engaging Statistics Students with Classroom Response Systems, Derek Bruff 61
 9.1 Introduction ... 61
 9.2 Course Overview .. 61
 9.3 Generating Small-Group and Classwide Discussion .. 62
 9.4 Creating Times for Telling .. 64
 9.5 Developing Conceptual Understanding ... 65
 9.6 Gathering Data .. 68
 9.7 Conclusion .. 68

10 Incorporating Clicker Technology in the Introductory Statistics Course, Roxy Peck 71
 10.1 Introduction ... 71
 10.2 Description of California Polytechnic State University and of the Course 71
 10.3 How I Chose to Incorporate Clickers and Lessons Learned ... 72
 10.4 Writing Good Clicker Questions .. 72
 10.5 An Informal Experiment — Student Perception and Impact on Student Performance 73
 10.6 In Closing .. 75
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Using Clickers in Courses for Future K–8 Teachers</td>
<td>77</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>77</td>
</tr>
<tr>
<td>11.2</td>
<td>Our Experience</td>
<td>77</td>
</tr>
<tr>
<td>11.3</td>
<td>Sample Lesson with Instructor Annotations</td>
<td>78</td>
</tr>
<tr>
<td>11.4</td>
<td>Summary</td>
<td>82</td>
</tr>
<tr>
<td>12</td>
<td>Using Clickers in Professional Development Workshops</td>
<td>83</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>83</td>
</tr>
<tr>
<td>12.2</td>
<td>Background</td>
<td>83</td>
</tr>
<tr>
<td>12.3</td>
<td>Content Knowledge</td>
<td>84</td>
</tr>
<tr>
<td>12.4</td>
<td>Awareness</td>
<td>84</td>
</tr>
<tr>
<td>12.5</td>
<td>Mathematical Experiment</td>
<td>85</td>
</tr>
<tr>
<td>12.6</td>
<td>Teacher Participant Reactions</td>
<td>86</td>
</tr>
<tr>
<td>12.7</td>
<td>Summary</td>
<td>86</td>
</tr>
<tr>
<td>13</td>
<td>Using ConcepTests in College Algebra</td>
<td>87</td>
</tr>
<tr>
<td>13.1</td>
<td>Background</td>
<td>87</td>
</tr>
<tr>
<td>13.2</td>
<td>Examples</td>
<td>88</td>
</tr>
<tr>
<td>13.3</td>
<td>Conclusions and Discussion</td>
<td>91</td>
</tr>
<tr>
<td>14</td>
<td>An Example of Multi-Purpose Use of Clickers in College Algebra</td>
<td>93</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>93</td>
</tr>
<tr>
<td>14.2</td>
<td>How This Class Works</td>
<td>93</td>
</tr>
<tr>
<td>14.3</td>
<td>Sample Lesson Plan</td>
<td>94</td>
</tr>
<tr>
<td>14.4</td>
<td>Rationale and Effectiveness</td>
<td>97</td>
</tr>
<tr>
<td>14.5</td>
<td>Instructor Impact</td>
<td>98</td>
</tr>
<tr>
<td>14.6</td>
<td>Conclusion</td>
<td>99</td>
</tr>
<tr>
<td>15</td>
<td>ConcepTests—Classroom Voting: A Catalyst for an Interactive College Algebra Classroom</td>
<td>101</td>
</tr>
<tr>
<td>15.1</td>
<td>Method</td>
<td>101</td>
</tr>
<tr>
<td>15.2</td>
<td>Examples</td>
<td>102</td>
</tr>
<tr>
<td>15.3</td>
<td>Implementation</td>
<td>104</td>
</tr>
<tr>
<td>15.4</td>
<td>Results</td>
<td>105</td>
</tr>
<tr>
<td>15.5</td>
<td>Conclusion</td>
<td>105</td>
</tr>
<tr>
<td>16</td>
<td>Using Clickers to Encourage Communication and Self-Reflection in Precalculus</td>
<td>107</td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>107</td>
</tr>
<tr>
<td>16.2</td>
<td>The Course</td>
<td>108</td>
</tr>
<tr>
<td>16.3</td>
<td>Clicker Questions</td>
<td>108</td>
</tr>
<tr>
<td>16.4</td>
<td>Purposes and Models</td>
<td>110</td>
</tr>
<tr>
<td>16.5</td>
<td>Summary</td>
<td>112</td>
</tr>
<tr>
<td>17</td>
<td>Writing and Adapting Classroom Voting Questions</td>
<td>113</td>
</tr>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td>113</td>
</tr>
<tr>
<td>17.2</td>
<td>Organization and preparation</td>
<td>113</td>
</tr>
<tr>
<td>17.3</td>
<td>Lesson: New Functions from Old</td>
<td>114</td>
</tr>
<tr>
<td>17.4</td>
<td>Lesson Reflection</td>
<td>118</td>
</tr>
<tr>
<td>17.5</td>
<td>Conclusion</td>
<td>119</td>
</tr>
</tbody>
</table>
18 Enhancing Student Participation and Attitudes in a Large-Lecture Calculus Course, Angela Sharp

18.1 Introduction
18.2 Background
18.3 Behind the scenes
18.4 In front of the class
18.5 Results
18.6 Conclusion

19 Good Questions for Mathematics Education: An Example from Multivariable Calculus, Maria Terrell

20 Integrating Classroom Voting Into Your Lectures: Some Thoughts and Examples from a Differential Equations Course, Christopher K. Storm

20.1 Introduction
20.2 Preparing for lecture
20.3 Conclusion

21 Classroom Voting Questions that Provoke Teachable Moments in Differential Equations, Kelly Cline, Holly Zullo, Mark Parker, John George, William Harris, Ann Stewart, and Christopher Storm

21.1 Units
21.2 Euler's Method
21.3 Equilibria
21.4 Nonhomogeneous Differential Equations
21.5 Uniqueness of Solutions
21.6 Systems of Differential Equations
21.7 Conclusions

22 Teaching Linear Algebra with Classroom Voting: A Class Period on Linear Independence, Kelly Cline

23 Lesson Planning with Classroom Voting: An Example from Linear Algebra, Holly Zullo

23.1 Introduction
23.2 Planning the Lesson: Matrix Multiplication and Inverses
23.3 Matrix Multiplication
23.4 Matrix Inverses
23.5 Lesson Summary
23.6 Conclusions

24 Using Clickers to Enhance Learning in Upper-Level Mathematics Courses, Patti Frazer Lock

24.1 Introduction
24.2 Background
24.3 Clickers in the Classroom
24.4 Using Clicker Questions in an Introduction to Proofs Course
24.5 Using Clicker Questions in an Abstract Algebra Course
24.6 Outcomes
24.7 Conclusion

Bibliography

About the Editors