Linear and Quasi-linear Evolution Equations in Hilbert Spaces

Pascal Cherrier
Albert Milani

Graduate Studies in Mathematics
Volume 135

American Mathematical Society
Providence, Rhode Island
Contents

Preface ix

Chapter 1. Functional Framework 1
§1.1. Basic Notation 1
§1.2. Functional Analysis Results 4
§1.3. Hölder Spaces 7
§1.4. Lebesgue Spaces 9
§1.5. Sobolev Spaces 13
§1.6. Orthogonal Bases in $H^m(\mathbb{R}^N)$ 51
§1.7. Sobolev Spaces Involving Time 60

Chapter 2. Linear Equations 77
§2.1. Introduction 77
§2.2. The Hyperbolic Cauchy Problem 78
§2.3. Proof of Theorem 2.2.1 81
§2.4. Weak Solutions 104
§2.5. The Parabolic Cauchy Problem 107

Chapter 3. Quasi-linear Equations 119
§3.1. Introduction 119
§3.2. The Hyperbolic Cauchy Problem 122
§3.3. Proof of Theorem 3.2.1 131
§3.4. The Parabolic Cauchy Problem 145
Chapter 4. Global Existence 153

§4.1. Introduction 153
§4.2. Life Span of Solutions 155
§4.3. Non Dissipative Finite Time Blow-Up 159
§4.4. Almost Global Existence 171
§4.5. Global Existence for Dissipative Equations 175
§4.6. The Parabolic Problem 214

Chapter 5. Asymptotic Behavior 233

§5.1. Introduction 233
§5.2. Convergence $u^{\text{hyp}}(t) \rightarrow u^{\text{sta}}$ 234
§5.3. Convergence $u^{\text{bar}}(t) \rightarrow u^{\text{sta}}$ 241
§5.4. Stability Estimates 244
§5.5. The Diffusion Phenomenon 278

Chapter 6. Singular Convergence 293

§6.1. Introduction 293
§6.2. An Example from ODEs 295
§6.3. Uniformly Local and Global Existence 301
§6.4. Singular Perturbation 305
§6.5. Almost Global Existence 326

Chapter 7. Maxwell and von Karman Equations 335

§7.1. Maxwell's Equations 335
§7.2. von Karman's Equations 343

List of Function Spaces 361
Bibliography 365
Index 375