Strasbourg
Master Class on
Geometry

Athanase Papadopoulos
Editor

with contributions by
N. A'Campo and A. Papadopoulos,
F. Dal'Bo, F. Herrlich,
Ph. Korablyev and S. Matveev, G. Link,
J. Marché, C. Petronio, V. Schroeder
Contents

Preface ... v

Norbert A’Campo and Athanase Papadopoulos
Notes on non-Euclidean geometry .. 1

Françoise Dal’Bo
Crossroads between hyperbolic geometry and number theory 183

Frank Herrlich
Introduction to origamis in Teichmüller space 233

Philipp Korabev and Sergey Matveev
Five lectures on 3-manifold topology .. 255

Gabriele Link
An introduction to globally symmetric spaces 285

Julien Marché
Geometry of the representation spaces in SU(2) 333

Carlo Petronio
Algorithmic construction and recognition of hyperbolic 3-manifolds, links, and graphs .. 371

Viktor Schroeder
An introduction to asymptotic geometry 405
Notes on non-Euclidean geometry

Norbert A'Campo and Athanase Papadopoulos

Mathematisches Institut, Universität Basel
Rheinsprung 21, 4051 Basel, Switzerland
email: norbertacampo@gmail.com

Institut de Recherche Mathématique Avancée
CNRS et Université de Strasbourg
7 rue René Descartes, 67084 Strasbourg Cedex, France
email: thanase.papadopoulos@math.unistra.fr

Contents

1 Introduction ... 2
2 On basic notions and axioms of the three geometries 9
 2.1 Introduction ... 9
 2.2 Basic notions ... 9
 2.3 Hilbert's axioms of neutral geometry 13
 2.4 Equivalent forms of Euclid's parallel postulate 18
 2.5 The axiom of hyperbolic geometry 23
 2.6 Spherical geometry 24
 2.7 Euclidean trigonometric formulae obtained as limits of hyperbolic and spherical trigonometric formulae 29
 2.8 Comments on references 31
3 The neutral plane .. 33
 3.1 Introduction ... 33
 3.2 Some results in neutral geometry 33
 3.3 Saccheri's Theorem and other results in neutral geometry .. 37
 3.4 Angular deficit in neutral geometry 42
 3.5 Trirectangular quadrilaterals in neutral geometry 48
 3.6 Khayyam–Saccheri quadrilaterals 50
 3.7 Projection in neutral geometry 54
4 The hyperbolic plane .. 55
 4.1 Some basic properties in hyperbolic geometry 55
 4.2 On quadrilaterals in hyperbolic geometry 58
 4.3 Trirectangular quadrilaterals in hyperbolic geometry 59
 4.4 Equidistance .. 62
 4.5 Geometric relations in quadrilaterals 67
These are notes on hyperbolic geometry, with many digressions on Euclidean and spherical geometry. The treatment of this subject is somehow different from the usual one because it is model-free. This is the way hyperbolic geometry was worked out by Lobachevsky, Bolyai and Gauss, the three founders of the field. The notes nevertheless contain a section on models of hyperbolic geometry (Section 8), and in the introductory part of that section, we point out several advantages of models. For instance, they provide a quick way for doing computations, by using the underlying Euclidean geometry and tools of linear algebra. They also give rise to nice pictures.