BOUNDARY VALUE PROBLEMS
FOR ANALYTIC AND HARMONIC
FUNCTIONS IN NONSTANDARD
BANACH FUNCTION SPACES

VAKHTANG KOKILASHVILI
AND
VAKHTANG PAATASHVILI
EDITOR

Nova Science Publishers, Inc.
New York
Contents

Preface ix

Basic Ingredients 1

1 The Smirnov Classes of Harmonic Functions and the Dirichlet Problem 9
1.1 Classes \(\mathcal{E}^p(D) \) and \(e^p(D) \) 11
1.2 The uniquely solvability criterion of the Dirichlet problem in \(e^p(D) \) 17
1.3 Some sets of Domains \(D \) for which the Dirichlet problem in \(e^p(D) \) is Uniquely Solvable 36
1.4 On the Dirichlet problem in the class \(\tilde{e}^p(D) \) 38
1.5 Notes and comments on Chapter 1 40

2 Singular Integrals in Nonstandard Banach Function Spaces 41
2.1 The Cauchy singular operator in weighted variable exponent Lebesgue spaces 41
2.2 The generalized grand Lebesgue spaces 59
2.3 The Cauchy singular integrals and maximal functions defined on Carleson curves 60
2.4 Boundedness of weighted singular integral operator in \(L^{p(t)}(\Gamma) \) 67
2.5 Notes and comments on Chapter 2 68

3 Variable Exponent Hardy and Smirnov Classes of Analytic Functions 71
3.1 Classes \(E^{p(t)}(D;\omega) \) and \(e^{p(\cdot)}(D;\omega) \) 71
3.2 On the existence of boundary values for the functions in \(H^{p(\cdot)}(\omega) \) 73
3.3 Some properties of the Cauchy type integrals with density from \(L^{p(\cdot)}(\gamma) \) 74
3.4 Convergence of sequences in \(H^{p(\cdot)} \) 79
3.5 Invariance of the classes \(\mathcal{P}(\Gamma) \) under a conformal mapping 81
3.6 On Smirnov classes in domains with piecewise Lyapunov boundary 83
3.7 Belonging of Cauchy type integrals to $E^{p(\cdot)}(D)$ 84
3.8 Class $W^{p(\cdot)}(U)$... 85
3.9 Classes $H^{p(x)}(\omega)$ and $\mathcal{P}(G)$.. 86
3.10 Variable exponent Hardy classes in a circular ring 88
3.11 Smirnov classes in doubly-connected domains 93
3.12 On the belonging of a Cauchy type integral to the class $E^{p_1(\cdot),p_2(\cdot)}(D)$ 94
3.13 Notes and comments on Chapter 3 .. 98

4 Boundary Value Problems for Analytic Functions 99
4.1 Some properties of the Cauchy type integrals with densities in $L^{p(\cdot)}(\Gamma)$ 101
4.2 The problem of linear conjugation with continuous coefficients 106
4.3 The problem of linear conjugation with continuous coefficients in the weighted class $K^{p(\cdot)}(\Gamma, \rho)$.. 110
4.4 The problem of linear conjugation with a piecewise continuous coefficient ... 111
4.5 The problem of linear conjugation with bounded measurable coefficient 113
4.6 On the boundedness of the singular operator in weighted $L^{p(\cdot)}(\Gamma, \rho)$-spaces .. 117
4.7 Reduction of the Riemann problem in weighted classes $K^{p(\cdot)}(\Gamma; \rho)$ to the Riemann problem in $K^{p(\cdot)}(\Gamma)$. Solution of the Riemann problem in weighted classes .. 119
4.8 On singular integral equations in $L^{p(\cdot)}(\Gamma, \rho)$ 122
4.9 The curves with the chord–arc condition ... 124
4.10 The classes of functions $\tilde{K}^{p(\cdot)}_{\alpha}(\Gamma, \rho)$ and $K^{p(\cdot)}_{\alpha}(\Gamma, \rho)$. The Statement of the Haseman Problem .. 125
4.11 Conditions of solvability of the Haseman problem in the classes $K^{p(\cdot)}_{\alpha}(\Gamma; \rho)$ and $K^{p(\cdot)}_{\alpha}(\Gamma)$.. 128
4.12 The Haseman problem with the coefficient $[\alpha'(t)]^{-1}$ 130
4.13 The Haseman problem with the coefficient $a = 1$ 131
4.14 The Haseman problem with a coefficient close to unity 134
4.15 Solution of homogeneous Haseman problem. 136
4.16 Solution of the Haseman problem in the classes $\tilde{K}^{p(\cdot)}_{\alpha}(\Gamma; \rho)$ and $K^{p(\cdot)}_{\alpha}(\Gamma; \rho)$.. 140
4.17 The Haseman problem with a piecewise continuous coefficient 142
4.18 Classes $W^{p(\cdot),\theta}(\Gamma)$ and $K^{p(\cdot),\theta}(\Gamma)$ 152
4.19 Problem (1) in the class $K^{p(\cdot),\theta}(\Gamma)$ with a piecewise continuous coefficient $G(t)$ and $g \in L^{p(\cdot),\theta}(\Gamma)$.. 159
4.20 Notes and comments on Chapter 4 .. 164
5 The Riemann-Hilbert Problem in Weighted Classes of Cauchy Type Integrals 167
5.1 Some definitions and auxiliary statements 168
5.2 Conditions of the coincidence of the classes $K^{p(\cdot)}(D; \omega)$ and $K^{p(\cdot)}(\Gamma; \omega)$ 169
5.3 Reduction of the Riemann-Hilbert problem to the Riemann problem 170
5.4 The properties of the function Ω when $\phi \in K^{p(\cdot)}(D; \omega)$ 173
5.5 Solution of the Riemann-Hilbert problem in the class $K^{p(\cdot)}(D; \omega)$ for a domain D with an arbitrary piecewise smooth boundary 179
5.6 Some particular cases 182
5.7 Invariance of the classes $P_{1+\varepsilon}(\Gamma)$ under a conformal mapping 186
5.8 On the belonging of a function $\prod_{k=1}^i (z(\tau) - z(a_k))$ to the class $W^{\ell(\cdot)}(\gamma)$ 187
5.9 One weight function 189
5.10 Reduction of the Riemann-Hilbert problem to a linear conjugation problem 190
5.11 Main result 194
5.12 Application to the Neumann problem 195
5.13 Non-Fredholmian case 196
5.14 Notes and comments on Chapter 5 198

6 The Dirichlet Problem for Variable Exponent Smirnov Classes Harmonic Functions in Domains with Arbitrary Piecewise Smooth boundaries 201
6.1 Solution of the Dirichlet problem in $h^{p(\cdot)}(D)$ when boundary Γ of D belongs to $C^{1,L}(A; \nu)$ 203
6.2 Solution of the Dirichlet problem in domain with arbitrary piecewise Lyapunov boundary 208
6.3 Reduction of the Dirichlet problem in $h^{p(\cdot)}(\omega)$ to the Riemann problem 209
6.4 Solution of the Dirichlet problem in the class $h^{p(\cdot)}(\omega)$ with special ω 211
6.5 The Dirichlet problem in the class $h^{p(\cdot)}(\omega)$ for the general weight functions 215
6.6 Class $H^{p(\cdot)}(C\bar{U}; \bar{\omega})$ and Dirichlet problem in the class $h^{p(\cdot)}(C\bar{U}; \bar{\omega})$ 216
6.7 The Dirichlet problem in the class $e^{p(\cdot)}(D)$ for a domain D with an arbitrary piecewise smooth boundary 218
6.8 The Dirichlet problem in circular ring 223
6.9 On the conformal mapping of a circular ring onto a doubly-connected domain with a piecewise smooth boundary 226
6.10 The Dirichlet problem in the class $e^{p_1(\cdot),p_2(\cdot)}(D)$ 229
6.11 The Dirichlet problem when Γ has points at which $\nu_k = 0$ or $\nu_k = p(t_k)$ 232
6.12 Integral equation with respect to the function
\[u_2(\rho e^{i\theta}) \] .. 235

6.13 Solution of the Dirichlet problem in the weighted class \(h^{\ell_1(\cdot), \ell_2(\cdot)}(K; \omega) \) 238

6.14 The basic result referring to the Dirichlet problem in the class \(\sigma^{p_1(\cdot), p_2(\cdot)}(D) \) .. 240

6.15 The Dirichlet problem with data from the grand Lebesgue spaces 242

6.16 Notes and comments on Chapter 6 244

7 The Riemann–Hilbert–Poincaré Problem 245

7.1 The Riemann-Hilbert Problem in Unbounded Domain 249

7.2 I. Vekua’s integral representation of analytic functions from the class \(K^{p(\cdot)}_{D^+, m}(\Gamma; \omega) \) 251

7.3 The Riemann–Hilbert–Poincaré problem in the class \(K^{p(\cdot)}_{D^+, m}(\Gamma; \omega) \) 256

7.4 Some particular cases ... 262

7.5 Notes and comments on Chapter 7 264

Bibliography 265

Index 277