CONTENTS

Introduction 1
1.1 Mathematical Models, Solutions, and Direction Fields 1
1.2 Linear Equations: Method of Integrating Factors 17
1.3 Numerical Approximations: Euler's Method 27
1.4 Classification of Differential Equations 37

First Order Differential Equations 44
2.1 Separable Equations 45
2.2 Modeling with First Order Equations 52
2.3 Differences Between Linear and Nonlinear Equations 67
2.4 Autonomous Equations and Population Dynamics 77
2.5 Exact Equations and Integrating Factors 91
2.6 Accuracy of Numerical Methods 99
2.7 Improved Euler and Runge-Kutta Methods 107

Projects

- **2.P.1** Harvesting a Renewable Resource 115
- **2.P.2** Designing a Drip Dispenser for a Hydrology Experiment 116
- **2.P.3** A Mathematical Model of a Groundwater Contaminant Source 118
- **2.P.4** Monte Carlo Option Pricing: Pricing Financial Options by Flipping a Coin 120

Systems of Two First Order Equations 123
3.1 Systems of Two Linear Algebraic Equations 124
3.2 Systems of Two First Order Linear Differential Equations 136
3.3 Homogeneous Linear Systems with Constant Coefficients 153
3.4 Complex Eigenvalues 169
3.5 Repeated Eigenvalues 179
3.6 A Brief Introduction to Nonlinear Systems 190
3.7 Numerical Methods for Systems of First Order Equations 198

Projects

- **3.P.1** Eigenvalue-Placement Design of a Satellite Attitude Control System 203
- **3.P.2** Estimating Rate Constants for an Open Two-Compartment Model 206
- **3.P.3** The Ray Theory of Wave Propagation 208
- **3.P.4** A Blood-Brain Pharmacokinetic Model 211

Second Order Linear Equations 214
4.1 Definitions and Examples 214
4.2 Theory of Second Order Linear Homogeneous Equations 227
4.3 Linear Homogeneous Equations with Constant Coefficients 239
4.4 Mechanical and Electrical Vibrations 252
4.5 Nonhomogeneous Equations; Method of Undetermined Coefficients 265
4.6 Forced Vibrations, Frequency Response, and Resonance 274
4.7 Variation of Parameters 285
Projects

4.P.1 A Vibration Insulation Problem 296
4.P.2 Linearization of a Nonlinear Mechanical System 297
4.P.3 A Spring-Mass Event Problem 299
4.P.4 Uniformly Distributing Points on a Sphere 300
4.P.5 Euler-Lagrange Equations 304

The Laplace Transform 309

5.1 Definition of the Laplace Transform 310
5.2 Properties of the Laplace Transform 319
5.3 The Inverse Laplace Transform 326
5.4 Solving Differential Equations with Laplace Transforms 335
5.5 Discontinuous Functions and Periodic Functions 343
5.6 Differential Equations with Discontinuous Forcing Functions 352
5.7 Impulse Functions 359
5.8 Convolution Integrals and Their Applications 366
5.9 Linear Systems and Feedback Control 376

Projects

5.P.1 An Electric Circuit Problem 386
5.P.2 Effects of Pole Locations on Step Responses of Second Order Systems 386
5.P.3 The Watt Governor, Feedback Control, and Stability 389

Systems of First Order Linear Equations 394

6.1 Definitions and Examples 395
6.2 Basic Theory of First Order Linear Systems 406
6.3 Homogeneous Linear Systems with Constant Coefficients 416
6.4 Nondefective Matrices with Complex Eigenvalues 427
6.5 Fundamental Matrices and the Exponential of a Matrix 437
6.6 Nonhomogeneous Linear Systems 448
6.7 Defective Matrices 455

Projects

6.P.1 A Compartment Model of Heat Flow in a Rod 463
6.P.2 Earthquakes and Tall Buildings 466
6.P.3 Controlling a Spring-Mass System to Equilibrium 468

Nonlinear Differential Equations and Stability 476

7.1 Autonomous Systems and Stability 476
7.2 Almost Linear Systems 486
7.3 Competing Species 497
7.4 Predator–Prey Equations 508
7.5 Periodic Solutions and Limit Cycles 517
7.6 Chaos and Strange Attractors: The Lorenz Equations 528

Projects

7.P.1 Modeling of Epidemics 536
7.P.2 Harvesting in a Competitive Environment 538
7.P.3 The Rössler System 540
Series Solutions of Second Order Linear Equations 541

8.1 Review of Power Series 543
8.2 Series Solutions Near an Ordinary Point, Part I 551
8.3 Series Solutions Near an Ordinary Point, Part II 562
8.4 Regular Singular Points 568
8.5 Series Solutions Near a Regular Singular Point, Part I 578
8.6 Series Solutions Near a Regular Singular Point, Part II 584
8.7 Bessel’s Equation 592

Projects
8.P.1 Diffraction Through a Circular Aperture 606
8.P.2 Hermite Polynomials and the Quantum Mechanical Harmonic Oscillator 611
8.P.3 Perturbation Methods 613

Partial Differential Equations and Fourier Series 621

9.1 Two-Point Boundary Value Problems 621
9.2 Fourier Series 627
9.3 The Fourier Convergence Theorem 638
9.4 Even and Odd Functions 644
9.5 Separation of Variables; Heat Conduction in a Rod 651
9.6 Other Heat Conduction Problems 660
9.7 The Wave Equation: Vibrations of an Elastic String 671
9.8 Laplace’s Equation 684

Appendixes
9.A Derivation of the Heat Equation 697
9.B Derivation of the Wave Equation 701

Projects
9.P.1 Estimating the Diffusion Coefficient in the Heat Equation 703
9.P.2 The Transmission Line Problem 705
9.P.3 Solving Poisson’s Equation by Finite Differences 710

Boundary Value Problems and Sturm–Liouville Theory 716

10.1 The Occurrence of Two-Point Boundary Value Problems 716
10.2 Sturm–Liouville Boundary Value Problems 723
10.3 Nonhomogeneous Boundary Value Problems 736
10.4 Singular Sturm–Liouville Problems 749
10.5 Further Remarks on the Method of Separation of Variables: A Bessel Series Expansion 755
10.6 Series of Orthogonal Functions: Mean Convergence 761

Projects
10.P.1 Dynamic Behavior of a Hanging Cable 773
10.P.3 Fisher’s Equation for Population Growth and Dispersion 782
Matrices and Linear Algebra 787
A.1 Matrices 787
A.2 Systems of Linear Algebraic Equations, Linear Independence, and Rank 796
A.3 Determinants and Inverses 813
A.4 The Eigenvalue Problem 822

Complex Variables 833

ANSWERS TO SELECTED PROBLEMS 838
REFERENCES 944
PHOTO CREDITS 947
INDEX 948